rkcco {RKUM} | R Documentation |
Robust kernel cross-covariance opetator
Description
# A function
Usage
rkcco(X, Y, lossfu = "Huber", kernel = "rbfdot", gamma = 1e-05)
Arguments
X |
a data matrix index by row |
Y |
a data matrix index by row |
lossfu |
a loss function: square, Hampel's or Huber's loss |
kernel |
a positive definite kernel |
gamma |
the hyper-parameters |
Value
rkcmx |
Robust kernel center matrix of X dataset |
rkcmy |
Robust kernel center matrix of Y dataset |
rkcmx |
Robust kernel covariacne operator of X dataset |
rkcmy |
Robust kernel covariacne operator of Y dataset |
rkcmx |
Robust kernel cross-covariacne operator of X and Y datasets |
Author(s)
Md Ashad Alam <malam@tulane.edu>
References
Md Ashad Alam, Kenji Fukumizu and Yu-Ping Wang (2018), Influence Function and Robust Variant of Kernel Canonical Correlation Analysis, Neurocomputing, Vol. 304 (2018) 12-29.
M. Romanazzi (1992), Influence in canonical correlation analysis, Psychometrika vol 57(2) (1992) 237-259.
See Also
See also as rkcca
snpfmridata
, ifrkcca
Examples
##Dummy data:
X <- matrix(rnorm(2000),200); Y <- matrix(rnorm(2000),200)
rkcco(X,Y, "Huber","rbfdot", 1e-05)