rkcca {RKUM} | R Documentation |
Robust kernel canonical correlation analysis
Description
#A robust correlation
Usage
rkcca(X, Y, lossfu = "Huber", kernel = "rbfdot", gamma = 1e-05, ncomps = 10)
Arguments
X |
a data matrix index by row |
Y |
a data matrix index by row |
lossfu |
a loss function: square, Hampel's or Huber's loss |
kernel |
a positive definite kernel |
gamma |
the hyper-parameters |
ncomps |
the number of canonical vectors |
Value
An S3 object containing the following slots:
rkcor |
Robsut kernel canonical correlation |
rxcoef |
Robsut kernel canonical coficient of X dataset |
rycoef |
Robsut kernel canonical coficient of Y dataset |
rxcv |
Robsut kernel canonical vector of X dataset |
rycv |
Robsut kernel canonical vector of Y dataset |
Author(s)
Md Ashad Alam <malam@tulane.edu>
References
Md Ashad Alam, Kenji Fukumizu and Yu-Ping Wang (2018), Influence Function and Robust Variant of Kernel Canonical Correlation Analysis, Neurocomputing, Vol. 304 (2018) 12-29.
M. Romanazzi (1992), Influence in canonical correlation analysis, Psychometrika vol 57(2) (1992) 237-259.
See Also
See also as ifcca
, rkcca
, ifrkcca
Examples
##Dummy data:
X <- matrix(rnorm(1000),100); Y <- matrix(rnorm(1000),100)
rkcca(X,Y, "Huber", "rbfdot", 1e-05, 10)