SvdMicrobenchmark {RHPCBenchmark} | R Documentation |
Conducts a single performance trial with the singular value decomposition (SVD) dense matrix kernel
Description
SvdMicrobenchmark
conducts a single performance trial of the
SVD dense matrix kernel for the matrix given in the kernelParameters
parameter. The function times the single function call
svd(kernelParameters$A)
.
Usage
SvdMicrobenchmark(benchmarkParameters, kernelParameters)
Arguments
benchmarkParameters |
an object of type
|
kernelParameters |
a list of matrices or vectors to be used as input to the dense matrix kernel |
Examples
## Not run:
# Allocate input to the singular value decomposition microbenchmark for the
# first matrix size to be tested
microbenchmarks <- GetDenseMatrixDefaultMicrobenchmarks()
kernelParameters <- SvdAllocator(microbenchmarks[["svd"]], 1)
# Execute the microbenchmark
timings <- SvdMicrobenchmark(microbenchmarks[["svd"]], kernelParameters)
## End(Not run)
[Package RHPCBenchmark version 0.1.0 Index]