fit.to.data.set.wrapper {RFlocalfdr} | R Documentation |
fit.to.data.set.wrapper
Description
This function allows you to express your love of cats.
Usage
fit.to.data.set.wrapper(
df,
imp,
debug.flag = 0,
plot.string = "",
temp.dir = temp.dir,
return.all = TRUE,
try.counter = 3
)
Arguments
df |
contains x and y, midpoints and counts from a histogram of imp |
imp |
importances |
debug.flag |
debug flag |
plot.string |
file name for a debugging plot, passed on to fit.to.data.set |
temp.dir |
directory for debugging output, passed on to fit.to.data.set |
return.all |
passed to fit.to.data.set. If TRUE then the full output of minpack.lm::nlsLM is returned. Otherwise just the matrix of coefficients and t-values is returned. |
try.counter |
passed on to fit.to.data.set try.counter=1 my.dsn xi= 1 try.counter=2 xi= mean(x) try.counter=3 start xi, omega, lambda from the parameters retuned by fitdistrplus::fitdist |
Value
If the skew-normal fitting routine is succesful, then the matrix of parmaters and standard errors is returned. – othewise a "try-error" message is returned
Examples
data(imp20000)
imp<-log(imp20000$importances)
t2<-imp20000$counts
temp<-imp[t2 > 1] #see
temp<-temp[temp != -Inf]
temp <- temp - min(temp) + .Machine$double.eps
f_fit <- f.fit(temp)
y <- f_fit$zh$density
x <- f_fit$midpoints
df <- data.frame(x, y)
fitted_parameters <- fit.to.data.set.wrapper(df, temp, try.counter = 3,return.all=FALSE)
fitted_parameters
hist(temp, breaks = 200, freq = FALSE)
lines(df$x, df$y, type = "l", col = "green", lwd = 2,
xlim = c(0, max(df$x) + 0.5))
curve(sn::dsn(x, xi = fitted_parameters$Estimate[1], omega = fitted_parameters$Estimate[2],
alpha = fitted_parameters$Estimate[3]), add = TRUE,
col = "purple", lwd = 3, xlim = c(0, 16))
curve(my.dsn(x, xi = fitted_parameters$Estimate[1], omega = fitted_parameters$Estimate[2],
lambda = fitted_parameters$Estimate[3]), add = TRUE,
col = "orange", lwd = 3)
library(RFlocalfdr.data)
data(ch22)
t2 <-ch22$C
imp<-log(ch22$imp)
imp<-imp[t2 > 30]
imp <- imp[imp != -Inf]
imp <- imp - min(imp) + .Machine$double.eps
f_fit <- f.fit(imp )
y <- f_fit$zh$density
x <- f_fit$midpoints
C <- quantile(imp,probs=0.75)
df2 <- data.frame(x[x < C], y[x < C])
initial.estimates <- fit.to.data.set.wrapper(df2, imp)
#Nonlinear regression model
# model: y ~ my.dsn(x, xi = xi, omega = omega, lambda = lambda)
# data: df
# xi.xi omega.omega lambda.alpha
# 1.163 1.193 1.574
# residual sum-of-squares: 0.06269
#
#Number of iterations to convergence: 23
#Achieved convergence tolerance: 1.49e-08
[Package RFlocalfdr version 0.8.5 Index]