Significance Level for Random Forest Impurity Importance Scores


[Up] [Top]

Documentation for package ‘RFlocalfdr’ version 0.8.5

Help Pages

count_variables count the number of times each variable is used in a ranger random forest
determine.C determine.C
determine_cutoff evaluate a measure that can be used to determining a significance level for the Mean Decrease in Impurity measure returned by a Random Forest model
dsn my.dsn
f.fit fit a spline to the histogram of imp
fit.to.data.set fit.to.data.set
fit.to.data.set.wrapper fit.to.data.set.wrapper
imp20000 20000 importance values
local.fdr local fdr
my.dsn my.dsn
my.test1fun my.test1fun
my_PIMP my_PIMP based on the PIMP function from the vita package. ‘PIMP’ implements the test approach of Altmann et al. (2010) for the permutation variable importance measure ‘VarImp’ returned by the randomForest package (Liaw and Wiener (2002)) for classification and regression.
my_ranger_PIMP my_ranger_PIMP based on the PIMP function from the vita package. ‘PIMP’ implements the test approach of Altmann et al. (2010) for the permutation variable importance measure ‘VarImp’ returned by the randomForest package (Liaw and Wiener (2002)) for classification and regression.
plotQ plotQ
propTrueNullByLocalFDR propTrueNullByLocalFDR
psn my.dsn
qsn my.dsn
run.it.importances run.it.importances
significant.genes significant.genes