| alpha95 {RFOC} | R Documentation | 
95 percent confidence for Spherical Distribution
Description
Calculates conical projection angle for 95% confidence bounds for mean of spherically distributed data.
Usage
alpha95(az, iang)
Arguments
az | 
 vector of azimuths, degrees  | 
iang | 
 vector of dips, degrees  | 
Details
Program calculates the cartesian coordinates of all poles, sums and returns the resultant vector, its azimuth and length (R). For N points, statistics include:
   K = \frac {N-1} { N-R}
 
   S = \frac{81^{\circ} }{\sqrt{K}}
 
   \kappa = \frac{log( \frac{\epsilon_1}{\epsilon_2}  )}{log(\frac{\epsilon_2}{\epsilon_3} )}
 
   \alpha_{95} = cos^{-1} \left[ 1 - \frac {N-R}{R} \left(
   20^{\frac{1}{N-1}} - 1  \right)  \right]
 
where \epsilon's are the relevant eigenvalues of matrix MAT and
angles are in degrees.
Value
LIST:
Ir | 
 resultant inclination, degrees  | 
Dr | 
 resultant declination, degrees  | 
R | 
 resultant sum of vectors, normalized  | 
K | 
 K-dispersion value  | 
S | 
 spherical variance  | 
Alph95 | 
 95% confidence angle, degrees  | 
Kappa | 
 log ratio of eignevectors  | 
E | 
 Eigenvactors  | 
MAT | 
 matrix of cartesian vectors  | 
Author(s)
Jonathan M. Lees<jonathan.lees@unc.edu>
References
Davis, John C., 2002, Statistics and data analysis in geology, Wiley, New York, 637p.
See Also
addsmallcirc
Examples
paz = rnorm(100, mean=297, sd=10)
pdip = rnorm(100, mean=52, sd=8)
ALPH = alpha95(paz, pdip)
#########  draw stereonet
net()
############  add points
focpoint(paz, pdip, col='red',  pch=3, lab="", UP=FALSE)
###############  add 95 percent confidence bounds
addsmallcirc(ALPH$Dr, ALPH$Ir, ALPH$Alph95, BALL.radius = 1, N = 25,
add = TRUE, lwd=1, col='blue')
############  second example:
paz = rnorm(100, mean=297, sd=100)
pdip = rnorm(100, mean=52, sd=20)
ALPH = alpha95(paz, pdip)
net()
focpoint(paz, pdip, col='red',  pch=3, lab="", UP=FALSE)
addsmallcirc(ALPH$Dr, 90-ALPH$Ir, ALPH$Alph95, BALL.radius = 1, N = 25,
add = TRUE, lwd=1, col='blue')