alpha95 {RFOC} | R Documentation |
95 percent confidence for Spherical Distribution
Description
Calculates conical projection angle for 95% confidence bounds for mean of spherically distributed data.
Usage
alpha95(az, iang)
Arguments
az |
vector of azimuths, degrees |
iang |
vector of dips, degrees |
Details
Program calculates the cartesian coordinates of all poles, sums and returns the resultant vector, its azimuth and length (R). For N points, statistics include:
K = \frac {N-1} { N-R}
S = \frac{81^{\circ} }{\sqrt{K}}
\kappa = \frac{log( \frac{\epsilon_1}{\epsilon_2} )}{log(\frac{\epsilon_2}{\epsilon_3} )}
\alpha_{95} = cos^{-1} \left[ 1 - \frac {N-R}{R} \left(
20^{\frac{1}{N-1}} - 1 \right) \right]
where \epsilon
's are the relevant eigenvalues of matrix MAT and
angles are in degrees.
Value
LIST:
Ir |
resultant inclination, degrees |
Dr |
resultant declination, degrees |
R |
resultant sum of vectors, normalized |
K |
K-dispersion value |
S |
spherical variance |
Alph95 |
95% confidence angle, degrees |
Kappa |
log ratio of eignevectors |
E |
Eigenvactors |
MAT |
matrix of cartesian vectors |
Author(s)
Jonathan M. Lees<jonathan.lees@unc.edu>
References
Davis, John C., 2002, Statistics and data analysis in geology, Wiley, New York, 637p.
See Also
addsmallcirc
Examples
paz = rnorm(100, mean=297, sd=10)
pdip = rnorm(100, mean=52, sd=8)
ALPH = alpha95(paz, pdip)
######### draw stereonet
net()
############ add points
focpoint(paz, pdip, col='red', pch=3, lab="", UP=FALSE)
############### add 95 percent confidence bounds
addsmallcirc(ALPH$Dr, ALPH$Ir, ALPH$Alph95, BALL.radius = 1, N = 25,
add = TRUE, lwd=1, col='blue')
############ second example:
paz = rnorm(100, mean=297, sd=100)
pdip = rnorm(100, mean=52, sd=20)
ALPH = alpha95(paz, pdip)
net()
focpoint(paz, pdip, col='red', pch=3, lab="", UP=FALSE)
addsmallcirc(ALPH$Dr, 90-ALPH$Ir, ALPH$Alph95, BALL.radius = 1, N = 25,
add = TRUE, lwd=1, col='blue')