| RFLPplot {RFLPtools} | R Documentation |
Function to plot RFLP data.
Description
Given RFLP data is plotted where the samples are sorted according to the corresponding dendrogram.
Usage
RFLPplot(x, nrBands, nrMissing, distfun = dist,
hclust.method = "complete", mar.bottom = 5,
cex.axis = 0.5, colBands, xlab = "",
ylab = "molecular weight", ylim, ...)
Arguments
x |
data.frame with RFLP data; see |
nrBands |
if not missing, then only samples with the specified number of bands are considered. |
nrMissing |
if not missing, then it is assumed that some bands may be missing. That is, all samples with number of bands in nrBands, nrBands+1, ..., nrBands+nrMissing are considered. |
distfun |
function computing the distance with default |
hclust.method |
method used for hierarchical clustering;
see |
mar.bottom |
bottom margin of the plot; see |
cex.axis |
size of the x-axis annotation. |
colBands |
color for the bands. Has to be of length 1 or number of samples.
If missing, |
xlab |
passed to function |
ylab |
passed to function |
ylim |
passed to function |
... |
additional arguments passed to function |
Details
RFLP data is plotted. The samples are sorted according to the corresponding
dendrogram which is computed via function hclust.
The option to specify nrMissing may be useful, if gel image quality is low,
and the detection of bands is doubtful.
Value
invisible
Author(s)
Fabienne Flessa Fabienne.Flessa@uni-bayreuth.de,
Alexandra Kehl Alexandra.Kehl@uni-tuebingen.de,
Matthias Kohl Matthias.Kohl@stamats.de
References
Flessa, F., Kehl, A., Kohl, M. Analysing diversity and community structures using PCR-RFLP: a new software application. Molecular Ecology Resources 2013 Jul; 13(4):726-33.
See Also
Examples
data(RFLPdata)
par(mfrow = c(1,2))
plot(hclust(RFLPdist(RFLPdata, nrBands = 3)), cex = 0.7)
RFLPplot(RFLPdata, nrBands = 3, mar.bottom = 6, cex.axis = 0.8)
par(mfrow = c(1,2))
plot(hclust(RFLPdist2(RFLPdata, nrBands = 9, nrMissing = 1)), cex = 0.7)
RFLPplot(RFLPdata, nrBands = 9, nrMissing = 1, mar.bottom = 6, cex.axis = 0.8)
distfun <- function(x) dist(x, method = "maximum")
par(mfrow = c(1,2))
plot(hclust(RFLPdist(RFLPdata, nrBands = 3, distfun = distfun),
method = "average"), cex = 0.7, cex.lab = 0.7)
RFLPplot(RFLPdata, nrBands = 3, distfun = distfun, hclust.method = "average",
mar.bottom = 6, cex.axis = 0.8)