rw.kernel-methods {RANKS} | R Documentation |
Random walk kernel
Description
Methods to compute the random walk kernel (Smola and Kondor, 2003)
Usage
## S4 method for signature 'matrix'
rw.kernel(W, a = 2)
## S4 method for signature 'graph'
rw.kernel(W, a = 2)
## S4 method for signature 'graph'
p.step.rw.kernel(RW, p = 2)
## S4 method for signature 'matrix'
p.step.rw.kernel(RW, p = 2)
Arguments
W |
a square symmetric matrix with positive values or an object of the class graphAM or graphNEL of the package graph |
RW |
matrix. It must be a random walk kernel matrix |
a |
numeric. It is correlated to the probability of remaining at the same vertex. Larger a, larger the probability (def. 2) |
p |
integer. Number of steps (def: p=2) |
Details
rw.kernel
methods computes the one step random walk kernel RW, i.e.:
RW = (a-1)I + D^{-\frac{1}{2}} * W * D^{-\frac{1}{2}}
where I
is the identity matrix, W
is the weighted adjacency matrix of an undirected graph,
and D
is a diagonal matrix with D_{ii} = \sum_j W_{ij}
p.step.rw.kernel
methods compute the p-step random walk kernel pRW, i.e.:
pRW = RW^p
Value
rw.kernel
: A numeric square matrix representing a one-step random walk kernel matrix
p.step.rw.kernel
: A numeric square matrix representing a p-step random walk kernel matrix
Methods
signature(W = "graph")
-
rw.kernel
computes the random walk kernel starting from a graph of class graph (hence including objects of class graphAM and graphNEL from the package graph) signature(W = "matrix")
-
rw.kernel
computes the random walk kernel starting from a weighted adjacency matrix representing the graph signature(RW = "graph")
-
p.step.rw.kernel
computes the a p-step random walk kernel starting from a graph of class graph (hence including objects of class graphAM and graphNEL from the package graph) signature(RW = "matrix")
-
p.step.rw.kernel
computes the p-step random walk kernel starting from a one-step random walk kernel matrix
Examples
# Random walk kernel computation using Functional Interaction network data
library(bionetdata);
data(FIN.data);
W <- as.matrix(FIN.data);
K <- rw.kernel(W);
# this a 2-step random walk kernel
K2 <- p.step.rw.kernel(K, p=2);