ramLCS {RAMpath} | R Documentation |
Univariate latent change score model
Description
Univariate latent change score model
Usage
ramLCS(data, y, timey, ram.out = FALSE, betay, my0, mys,
varey, vary0, varys, vary0ys, ...)
Arguments
data |
data |
y |
y data |
timey |
time of y |
ram.out |
Whether print ram matrices |
betay |
Starting value |
my0 |
Starting value |
mys |
Starting value |
varey |
Starting value |
vary0 |
Starting value |
varys |
Starting value |
vary0ys |
Starting value |
... |
Options can be used for lavaan |
Value
model |
The lavaan model specification of the bivariate latent change score model |
lavaan |
The lavaan output |
ram |
Output in terms of RAM matrices |
References
Zhang, Z., Hamagami, F., Grimm, K. J., & McArdle, J. J. (2015). Using R package RAMpath for tracing SEM path diagrams and conducting complex longitudinal data analysis. Structural Equation Modeling, 22(1), 132-147. https://doi.org/10.1080/10705511.2014.935257
Examples
data(ex3)
test.lcs<-ramLCS(ex3, 7:12)
summary(test.lcs$lavaan, fit=TRUE)
bridge<-ramPathBridge(test.lcs$ram, allbridge=FALSE, indirect=FALSE)
## uncomment to plot
## plot(bridge, 'lcs')
[Package RAMpath version 0.5.1 Index]