plotblock {R2BayesX} | R Documentation |
Factor Variable and Random Effects Plots
Description
Function to plot effects for model terms including factor, or group variables for random effects,
typically used for objects created within bayesx
or read.bayesx.output
.
Usage
plotblock(x, residuals = FALSE, range = c(0.3, 0.3),
col.residuals = "black", col.lines = "black", c.select = NULL,
fill.select = NULL , col.polygons = NULL, data = NULL,
shift = NULL, trans = NULL, ...)
Arguments
x |
either a |
residuals |
if set to |
range |
|
col.residuals |
the color of the partial residuals. |
col.lines |
vector of maximum length of columns of |
c.select |
|
fill.select |
|
col.polygons |
specify the background color for the upper and lower confidence bands, e.g.
|
data |
if |
shift |
numeric. Constant to be added to the smooth before plotting. |
trans |
function to be applied to the smooth before plotting, e.g., to transform the plot to the response scale. |
... |
graphical parameters, please see the details. |
Details
Function plotblock
draws for every factor or group the effect as a "block" in one graphic,
i.e. similar to boxplots, estimated fitted effects, e.g. containing quantiles for MCMC
estimated models, are drawn as one block, where the upper lines represent upper quantiles, the
middle line the mean or median, and lower lines lower quantiles, also see the examples. The
following graphical parameters may be supplied additionally:
-
cex
: specify the size of partial residuals, -
lty
: the line type for each column that is plotted, e.g.lty = c(1, 2)
, -
lwd
: the line width for each column that is plotted, e.g.lwd = c(1, 2)
, -
poly.lty
: the line type to be used for the polygons, -
poly.lwd
: the line width to be used for the polygons, -
density
angle
,border
: seepolygon
, -
...
: other graphical parameters, see functionplot
.
Author(s)
Nikolaus Umlauf, Thomas Kneib, Stefan Lang, Achim Zeileis.
See Also
plot.bayesx
, bayesx
, read.bayesx.output
,
fitted.bayesx
.
Examples
## generate some data
set.seed(111)
n <- 500
## regressors
dat <- data.frame(fac = factor(rep(1:10, n/10)))
## response
dat$y <- with(dat, 1.5 + c(2.67, 5, 6, 3, 4, 2, 6, 7, 9, 7.5)[fac] +
rnorm(n, sd = 0.6))
## Not run:
## estimate model
b <- bayesx(y ~ fac, data = dat)
summary(b)
## plot factor term effects
plot(b, term = "fac")
## extract fitted effects
f <- fitted(b, term = "fac")
## now use plotblock
plotblock(f)
## some variations
plotblock(f, col.poly = c(2, 3))
plotblock(f, col.poly = NA, lwd = c(2, 1, 1, 1, 1))
plotblock(f, col.poly = NA, lwd = 3, range = c(0.5,0.5))
plotblock(f, col.poly = NA, lwd = 3, col.lines = 1:5, lty = 1)
plotblock(f, col.poly = NA, lwd = 3, col.lines = 1:5,
lty = c(3, 1, 2, 2, 1))
plotblock(f, resid = TRUE)
plotblock(f, resid = TRUE, cex = 0.1)
plotblock(f, resid = TRUE, cex = 0.1, col.resid = 2)
plotblock(f, resid = TRUE, cex = 2, col.resid = 3, pch = 3)
plotblock(f, lty = 0, poly.lty = 1, density = c(5, 20))
plotblock(f, lty = 0, poly.lty = 1, density = c(5, 20),
poly.lwd = c(1, 2))
plotblock(f, lty = 0, poly.lty = c(1, 2), density = c(5, 20))
plotblock(f, lty = 0, poly.lty = c(1, 2), density = c(5, 20),
border = c("red", "green3"))
plotblock(f, lty = 0, poly.lty = c(1, 2), density = c(5, 20),
border = c("red", "green3"), col.poly = c("blue", "yellow"))
plotblock(f, lty = c(1,0,0,0,0), poly.lty = c(1, 2),
density = c(5, 20), border = c("red", "green3"),
col.poly = c("blue", "yellow"))
plotblock(f, lty = c(1,0,0,0,0), poly.lty = c(1, 2),
density = c(20, 20), border = c("red", "green3"),
col.poly = c("blue", "yellow"), angle = c(10, 75))
## End(Not run)
## another example
plotblock(y ~ fac, data = dat, range = c(0.45, 0.45))
dat <- data.frame(fac = factor(rep(1:10, n/10)))
dat$y <- with(dat, c(2.67, 5, 6, 3, 4, 2, 6, 7, 9, 7.5)[fac])
plotblock(y ~ fac, data = dat)
plotblock(cbind(y - 0.1, y + 0.1) ~ fac, data = dat)
plotblock(cbind(y - 0.1, y + 0.1) ~ fac, data = dat,
fill.select = c(0, 1, 1))
plotblock(cbind(y - 0.1, y + 0.1) ~ fac, data = dat,
fill.select = c(0, 1, 1), poly.lty = 2, lty = 1,
border = "grey5")