plot3d {R2BayesX} | R Documentation |
3D Effect Plot
Description
Function to plot 3D graphics or image and/or contour plots for bivariate effects/functions,
typically used for objects of class "sm.bayesx"
and "geo.bayesx"
returned from
function bayesx
and read.bayesx.output
.
Usage
plot3d(x, residuals = FALSE, col.surface = NULL,
ncol = 99L, swap = FALSE, col.residuals = NULL, col.contour = NULL,
c.select = NULL, grid = 30L, image = FALSE, contour = FALSE,
legend = TRUE, cex.legend = 1, breaks = NULL, range = NULL,
digits = 2L, d.persp = 1L, r.persp = sqrt(3), outscale = 0,
data = NULL, sep = "", shift = NULL, trans = NULL,
type = "interp", linear = FALSE, extrap = FALSE,
k = 40, ...)
Arguments
x |
a matrix or data frame, containing the covariates for which the effect should be plotted
in the first and second column and at least a third column containing the effect, typically
the structure for bivariate functions returned within |
residuals |
if set to |
col.surface |
the color of the surface, may also be a function, e.g.
|
ncol |
the number of different colors that should be generated, if |
swap |
if set to |
col.residuals |
the color of the partial residuals, or if |
col.contour |
the color of the contour lines. |
c.select |
|
grid |
the grid size of the surface(s). |
image |
if set to |
contour |
if set to |
legend |
if |
cex.legend |
the expansion factor for the legend text, see |
breaks |
a set of breakpoints for the colors: must give one more breakpoint than
|
range |
specifies a certain range values should be plotted for. |
digits |
specifies the legend decimal places. |
d.persp |
see argument |
r.persp |
see argument |
outscale |
scales the outer ranges of |
data |
if |
sep |
the field separator character when |
shift |
numeric. Constant to be added to the smooth before plotting. |
trans |
function to be applied to the smooth before plotting, e.g., to transform the plot to the response scale. |
type |
character. Which type of interpolation metjod should be used. The default is
|
linear |
logical. Should linear interpolation be used withing function
|
extrap |
logical. Should interpolations be computed outside the observation area (i.e., extrapolated)? |
k |
integer. The number of basis functions to be used to compute the interpolated surface
when |
... |
parameters passed to |
Details
For 3D plots the following graphical parameters may be specified additionally:
-
cex
: specify the size of partial residuals, -
col
: it is possible to specify the color for the surfaces ifse > 0
, then e.g.col = c("green", "black", "red")
, -
pch
: the plotting character of the partial residuals, -
...
: other graphical parameters passed functionspersp
,image.plot
andcontour
.
Author(s)
Nikolaus Umlauf, Thomas Kneib, Stefan Lang, Achim Zeileis.
See Also
plot.bayesx
, bayesx
, read.bayesx.output
,
fitted.bayesx
, colorlegend
.
Examples
## generate some data
set.seed(111)
n <- 500
## regressors
dat <- data.frame(z = runif(n, -3, 3), w = runif(n, 0, 6))
## response
dat$y <- with(dat, 1.5 + cos(z) * sin(w) + rnorm(n, sd = 0.6))
## Not run:
## estimate model
b <- bayesx(y ~ sx(z, w, bs = "te", knots = 5), data = dat, method = "REML")
summary(b)
## plot estimated effect
plot(b, term = "sx(z,w)")
## extract fitted effects
f <- fitted(b, term = "sx(z,w)")
## now use plot3d
plot3d(f)
plot3d(f, swap = TRUE)
plot3d(f, residuals = TRUE)
plot3d(f, resid = TRUE, cex.resid = 0.1)
plot3d(f, resid = TRUE, pch = 2, col.resid = "green3")
plot3d(f, resid = TRUE, c.select = 95, cex.resid = 0.1)
plot3d(f, resid = TRUE, c.select = 80, cex.resid = 0.1)
plot3d(f, grid = 100, border = NA)
plot3d(f, c.select = 95, border = c("red", NA, "green"),
col.surface = c(1, NA, 1), resid = TRUE, cex.resid = 0.2)
## now some image and contour
plot3d(f, image = TRUE, legend = FALSE)
plot3d(f, image = TRUE, legend = TRUE)
plot3d(f, image = TRUE, contour = TRUE)
plot3d(f, image = TRUE, contour = TRUE, swap = TRUE)
plot3d(f, image = TRUE, contour = TRUE, col.contour = "white")
plot3d(f, contour = TRUE)
op <- par(no.readonly = TRUE)
par(mfrow = c(1, 3))
plot3d(f, image = TRUE, contour = TRUE, c.select = 3)
plot3d(f, image = TRUE, contour = TRUE, c.select = "Estimate")
plot3d(f, image = TRUE, contour = TRUE, c.select = "97.5
par(op)
## End(Not run)
## another variation
dat$f1 <- with(dat, sin(z) * cos(w))
with(dat, plot3d(cbind(z, w, f1)))
## same with formula
plot3d(sin(z) * cos(w) ~ z + w, zlab = "f(z,w)", data = dat)
plot3d(sin(z) * cos(w) ~ z + w, zlab = "f(z,w)", data = dat,
ticktype = "detailed")
## play with palettes
plot3d(sin(z) * cos(w) ~ z + w, col.surface = heat.colors, data = dat)
plot3d(sin(z) * cos(w) ~ z + w, col.surface = topo.colors, data = dat)
plot3d(sin(z) * cos(w) ~ z + w, col.surface = cm.colors, data = dat)
plot3d(sin(z) * cos(w) ~ z + w, col.surface = rainbow, data = dat)
plot3d(sin(z) * cos(w) ~ z + w, col.surface = terrain.colors, data = dat)
plot3d(sin(z) * cos(w) ~ z + w, col.surface = rainbow_hcl, data = dat)
plot3d(sin(z) * cos(w) ~ z + w, col.surface = diverge_hcl, data = dat)
plot3d(sin(z) * cos(w) ~ z + w, col.surface = sequential_hcl, data = dat)
plot3d(sin(z) * cos(w) ~ z + w,
col.surface = rainbow_hcl(n = 99, c = 300, l = 80, start = 0, end = 100),
data = dat)
plot3d(sin(z) * cos(w) ~ z + w,
col.surface = rainbow_hcl(n = 99, c = 300, l = 80, start = 0, end = 100),
image = TRUE, grid = 200, data = dat)