| GRstats {R2BayesX} | R Documentation | 
Compute Gelman and Rubin's convergence diagnostics from multicore BayesX models.
Description
This function takes a fitted bayesx object estimated with multiple chains/cores and
computes the Gelman and Rubin's convergence diagnostic of the model parameters using function
gelman.diag provided in package coda.
Usage
GRstats(object, term = NULL, ...)
Arguments
| object | an object of class  | 
| term | character or integer. The term for which the diagnostics should be computed, 
see also function  | 
| ... | arguments passed to function  | 
Value
An object returned from gelman.diag.
Author(s)
Nikolaus Umlauf, Thomas Kneib, Stefan Lang, Achim Zeileis.
See Also
Examples
## Not run: 
## generate some data
set.seed(111)
n <- 500
## regressors
dat <- data.frame(x = runif(n, -3, 3), z = runif(n, -3, 3),
   w = runif(n, 0, 6), fac = factor(rep(1:10, n/10)))
## response
dat$y <- with(dat, 1.5 + sin(x) + cos(z) * sin(w) +
   c(2.67, 5, 6, 3, 4, 2, 6, 7, 9, 7.5)[fac] + rnorm(n, sd = 0.6))
## estimate model
b <- bayesx(y ~ sx(x) + sx(z, w, bs = "te") + fac,
   data = dat, method = "MCMC", chains = 3)
## obtain Gelman and Rubin's convergence diagnostics
GRstats(b, term = c("sx(x)", "sx(z,w)"))
GRstats(b, term = c("linear-samples", "var-samples"))
## of all parameters
GRstats(b, term = c("sx(x)", "sx(z,w)",
  "linear-samples", "var-samples"))
## End(Not run)
[Package R2BayesX version 1.1-5 Index]