EQF.permu {QTLEMM} | R Documentation |
EQF Permutation
Description
The EQF matrix cluster permutation process for QTL hotspot detection.
Usage
EQF.permu(
LOD.QTLdetect.result,
ptime = 1000,
alpha = 0.05,
Q = TRUE,
console = TRUE
)
Arguments
LOD.QTLdetect.result |
list. The data list of the output from LOD.QTLdetect(). |
ptime |
integer. The permutation times. |
alpha |
numeric. The type 1 error rate of detecting the hotspot. |
Q |
logical. When set to TRUE, the function will additionally carry out the permutation of the Q method as the control group, which will be indicated as 'B' in the output. |
console |
logical. Determines whether the process of the algorithm will be displayed in the R console or not. |
Value
EQF.matrix |
The matrix denotes the EQF value of each bin. |
bin |
The bin information matrix used in this analysis. |
LOD.threshold |
The LOD threshold used in this analysis. |
cluster.number |
The number of QTLs in each cluster group. |
cluster.id |
The serial number of traits in each cluster group. |
cluster.matrix |
The new EQF matrix after the clustering process. |
permu.matrix.cluster |
The permutation result of the clustering method, which has been sorted by order. |
permu.matrix.Q |
The permutation result of the Q method, which has been sorted by order. |
EQF.threshold |
The EQF threshold is calculated from the permutation process. |
References
Wu, P.-Y., M.-.H. Yang, and C.-H. KAO 2021 A Statistical Framework for QTL Hotspot Detection. G3: Genes, Genomes, Genetics: jkab056. <doi: 10.1093/g3journal/jkab056>
See Also
Examples
# load the example data
load(system.file("extdata", "LODexample.RDATA", package = "QTLEMM"))
# run and result
result <- EQF.permu(LOD.QTLdetect.result, ptime = 50)
result$cluster.number