interpolate_data {PupillometryR} | R Documentation |
Interpolate across the gaps in data
Description
Once data is smoothed, it is important to deal with missing observations, such as blinks. This allows simple interpolation over missing values, either linear, or cubic. Depending on the analysis planed, this may not be a necessary option, but it is strongly recommended for the functional analyses planned in this package.
Usage
interpolate_data(data, pupil, type = c("linear", "cubic"))
Arguments
data |
a PupillometryR dataframe |
pupil |
Column name for pupil data to be interpolated |
type |
string indicating linear or cubic interpolation to be performed. |
Value
interpolated pupillometry data
Examples
Sdata <- make_pupillometryr_data(data = pupil_data,
subject = ID,
trial = Trial,
time = Time,
condition = Type)
mean_data <- calculate_mean_pupil_size(data = Sdata,
pupil1 = RPupil, pupil2 = LPupil)
filtered_data <- filter_data(data = mean_data,
pupil = mean_pupil,
filter = 'hanning',
degree = 11)
int_data <- interpolate_data(data = filtered_data,
pupil = mean_pupil,
type = 'linear')
[Package PupillometryR version 0.0.5 Index]