gibbs_normal {ProbBayes} | R Documentation |
Gibbs sampling of the normal sampling posterior
Description
Implements Gibbs sampling for normal sampling with independent priors on the mean and precision
Usage
gibbs_normal(s, P = 0.002, iter = 1000)
Arguments
s |
a list with components y, the observed data, mu0, the prior mean of mu, sigma0, the prior standard deviation of mu, a, the shape parameter of the gamma prior on P, b, the rate parameter of the gamma prior on P |
P |
starting value of the precision parameter |
iter |
number of iterations |
Value
matrix of simulated draws of (mu, P) from the algorithm
Author(s)
Jim Albert
Examples
s <- list(y = rnorm(20, 5, 2),
mu0 = 10, sigma0 = 3, a = 1, b = 1)
out <- gibbs_normal(s, P = 0.01, iter=100)
[Package ProbBayes version 1.1 Index]