fscore {PredPsych} | R Documentation |
f-score
Description
A simple function to generate F-scores (Fisher scores) for ranking features
Usage
fscore(Data, classCol, featureCol, silent = FALSE)
Arguments
Data |
(dataframe) Data dataframe |
classCol |
(numeric) column with different classes |
featureCol |
(numeric) all the columns that contain features |
silent |
(optional) (logical) whether to print messages or not |
Details
The function implements F-score for feature selection. F-score provides a measure of how well a single feature at a time can discriminate between different classes. The higher the F-score, the better the discriminatory power of that feature
The F-score is calculated for two classes
Value
named numeric f-scores
Author(s)
Atesh Koul, C'MON unit, Istituto Italiano di Tecnologia
References
Duda, R. O., Hart, P. E., & Stork, D. G. (2000). Pattern Classification. Wiley-Interscience (Vol. 24).
Chen, Y., & Lin, C.-J. (2006). Combining SVMs with Various Feature Selection Strategies. In I. Guyon, M. Nikravesh, S. Gunn, & L. A. Zadeh (Eds.), Feature Extraction: Foundations and Applications (Vol. 324, pp. 315-324). Berlin, Heidelberg: Springer Berlin Heidelberg.
Examples
# calculate f-scores for 10% of movement
fscore(KinData,classCol = 1,featureCol = c(2,12,22,32,42,52,62,72,82,92,102,112))
# Output:
# Performing Feature selection f-score analysis
# --f-scores--