nContMoe {PracTools} | R Documentation |
Compute a simple random sample size for an estimated mean of a continuous variable based on margin of error
Description
Compute a simple random sample size using a margin of error specified as the half-width of a normal approximation confidence interval or the half-width relative to the population mean.
Usage
nContMoe(moe.sw, e, alpha=0.05, CVpop=NULL, S2=NULL, ybarU=NULL, N=Inf)
Arguments
moe.sw |
switch for setting desired margin of error (1 = CI half-width on the mean;
2 = CI half-width on the mean divided by |
e |
desired margin of error; either |
alpha |
1 - (confidence level) |
CVpop |
unit (population) coefficient of variation |
S2 |
population variance of the target variable |
ybarU |
population mean of target variable |
N |
number of units in finite population |
Details
If moe.sw
=1, then S2
must be provided. If moe.sw
=2, then either (i) CVpop
or (ii) S2
and ybarU
must be provided.
Value
numeric sample size
Author(s)
Richard Valliant, Jill A. Dever, Frauke Kreuter
References
Valliant, R., Dever, J., Kreuter, F. (2018, chap. 3). Practical Tools for Designing and Weighting Survey Samples, 2nd edition. New York: Springer.
See Also
nCont
, nLogOdds
, nProp
, nPropMoe
, nWilson
Examples
nContMoe(moe.sw=1, e=0.05, alpha=0.05, S2=2)
nContMoe(moe.sw=1, e=0.05, alpha=0.05, S2=2, N=200)
nContMoe(moe.sw=2, e=0.05, alpha=0.05, CVpop=2)
nContMoe(moe.sw=2, e=0.05, alpha=0.05, CVpop=2, N=200)
nContMoe(moe.sw=2, e=0.05, alpha=0.05, S2=4, ybarU=2)