plot.bruSDM_predict {PointedSDMs} | R Documentation |
Generic plot function for predict_bru_sdm
.
Description
Plot for predict_bru_sdm
Plot for modISDM_predict
Plot for modMarks_predict
Plot for modSpecies_predict
Usage
## S3 method for class 'bruSDM_predict'
plot(
x,
whattoplot = c("mean"),
cols = NULL,
layout = NULL,
colourLow = NULL,
colourHigh = NULL,
plot = TRUE,
...
)
## S3 method for class 'modISDM_predict'
plot(x, variable = "mean", plot = TRUE, ...)
## S3 method for class 'modMarks_predict'
plot(x, variable = "mean", plot = TRUE, ...)
## S3 method for class 'modSpecies_predict'
plot(x, variable = "mean", plot = TRUE, ...)
Arguments
x |
A modSpecies_predict object. |
whattoplot |
One of the following statistics to plot: "mean", "sd", "q0.025", "median","q0.975", "smin", "smax", "cv", "var" |
cols |
Number of columns required for the plotting. Used by inlabru's multiplot function. |
layout |
Layout of the plots. Used by inlabru's multiplot function. |
colourLow |
Colour for the low values in the predictions (see ?scale_colour_gradient from |
colourHigh |
Colour for the high values in the predictions (see ?scale_colour_gradient from |
plot |
Should the plots be printed, defaults to |
... |
Argument not used |
variable |
One of the following statistics to plot: "mean", "sd", "q0.025", "median","q0.975", "smin", "smax", "cv", "var" |
Value
A ggplot2 object.
A ggplot2 object.
A ggplot2 object.
A ggplot2 object.
Examples
## Not run:
if (requireNamespace('INLA')) {
#Get Data
data("SolitaryTinamou")
proj <- "+proj=longlat +ellps=WGS84"
data <- SolitaryTinamou$datasets
mesh <- SolitaryTinamou$mesh
mesh$crs <- proj
#Set model up
organizedData <- intModel(data, Mesh = mesh, Coordinates = c('X', 'Y'),
Projection = proj, responsePA = 'Present')
##Run the model
modelRun <- fitISDM(organizedData, options = list(control.inla = list(int.strategy = 'eb')))
#Predict spatial field on linear scale
predictions <- predict(modelRun, mesh = mesh, spatial = TRUE, fun = 'linear')
#Make generic plot of predictions
plot(predictions, colourHigh = 'red', colourLow = 'orange')
}
## End(Not run)
## Not run:
if (requireNamespace('INLA')) {
#Get Data
data("SolitaryTinamou")
proj <- "+proj=longlat +ellps=WGS84"
data <- SolitaryTinamou$datasets
mesh <- SolitaryTinamou$mesh
mesh$crs <- proj
#Set model up
organizedData <- intModel(data, Mesh = mesh, Coordinates = c('X', 'Y'),
Projection = proj, responsePA = 'Present')
##Run the model
modelRun <- fitISDM(organizedData, options = list(control.inla = list(int.strategy = 'eb')))
#Predict spatial field on linear scale
predictions <- predict(modelRun, mesh = mesh, spatial = TRUE, fun = 'linear')
#Make generic plot of predictions
plot(predictions, colourHigh = 'red', colourLow = 'orange')
}
## End(Not run)
## Not run:
if (requireNamespace('INLA')) {
#Get Data
data("SolitaryTinamou")
proj <- "+proj=longlat +ellps=WGS84"
data <- SolitaryTinamou$datasets
mesh <- SolitaryTinamou$mesh
mesh$crs <- proj
#Set model up
organizedData <- startMarks(data, Mesh = mesh,
Projection = proj, responsePA = 'Present',
markNames = 'speciesName',
markFamily = 'multinomial')
##Run the model
modelRun <- fitISDM(organizedData, options = list(control.inla = list(int.strategy = 'eb',
diagonal = 1)))
#Predict spatial field on linear scale
predictions <- predict(modelRun, mesh = mesh, spatial = TRUE, fun = 'linear')
#Make generic plot of predictions
plot(predictions)
}
## End(Not run)
## Not run:
if (requireNamespace('INLA')) {
#Get Data
data("SolitaryTinamou")
proj <- "+proj=longlat +ellps=WGS84"
data <- SolitaryTinamou$datasets
mesh <- SolitaryTinamou$mesh
mesh$crs <- proj
#Set model up
organizedData <- intModel(data, Mesh = mesh, Coordinates = c('X', 'Y'),
Projection = proj, responsePA = 'Present')
##Run the model
modelRun <- fitISDM(organizedData, options = list(control.inla = list(int.strategy = 'eb')))
#Predict spatial field on linear scale
predictions <- predict(modelRun, mesh = mesh, spatial = TRUE, fun = 'linear')
#Make generic plot of predictions
plot(predictions, colourHigh = 'red', colourLow = 'orange')
}
## End(Not run)