transformNonlinear {PhenotypeSimulator} | R Documentation |
Phenotype transformation.
Description
Transformation of phenotype component by applying a user-specified non-linear transformation to the phenotype component.
Usage
transformNonlinear(
component,
alpha,
method,
logbase = 10,
power = 2,
expbase = NULL,
transformNeg = "abs",
f = NULL,
verbose = TRUE
)
Arguments
component |
[N x P] Phenotype matrix [double] where [N] are the number of samples and P the number of phenotypes |
alpha |
[double] weighting scalar for non-linearity: alpha==0 fully linear phenotype, alpha==1 fully non-linear phenotype. See @details. |
method |
[string] one of exp (exponential), log (logarithm), poly (polynomial), sqrt (squareroot) or custom (user-supplied function) |
logbase |
[int] when method==log, sets the log base for transformation |
power |
[double] when method==poly, sets the power to raise to. |
expbase |
[double] when method==exp, sets the exp base for transformation. |
transformNeg |
[string] one of abs (absolute value) or set0 (set all negative values to zero). If method==log and transformNeg==set0, negative values set to 1e-5 |
f |
[function] function accepting component as a single argument. |
verbose |
[boolean]; If TRUE, progress info is printed to standard out. |
Details
transformNonlinear takes a phenotype component as input and transforms it according to the specified transformation method. The user can choose how strongly non-linear the resulting phenotype component should be, by specifying the weighting parameter alpha: component_transformed = (1 - alpha) \* component + alpha \* transformfunction(component)
Value
[N x P] transformed phenotype matrix [double]
Examples
# Simulate non-genetic covariate effects
cov_effects <- noiseFixedEffects(N=100, P=5)
# Transform logarithmically
covs_log <- transformNonlinear(cov_effects$shared, alpha=0.5, method="log",
transformNeg="abs")
# Transform custom
f_custom <- function(x) {x^2 + 3*x}
covs_custom <- transformNonlinear(cov_effects$shared, alpha=0.5,
method="custom", f=f_custom)