lzpoly {PerFit}R Documentation

lzpoly person-fit statistic

Description

Compute the lzpoly (Drasgow, Levine, and Williams, 1985) person-fit statistic.

Usage

lzpoly(matrix, Ncat, 
       NA.method = "Pairwise", Save.MatImp = FALSE,
       IP = NULL, IRT.PModel = "GRM", Ability = NULL, Ability.PModel = "EAP")

Arguments

matrix

A data matrix of polytomous item scores: Persons as rows, items as columns, item scores are integers between 0 and (Ncat-1), missing values allowed.

Ncat

Number of answer options for each item.

NA.method

Method to deal with missing values. The default is pairwise elimination ("Pairwise"). Alternatively, simple imputation methods are also available. The options available are "Hotdeck", "NPModel" (default), and "PModel".

Save.MatImp

Logical. Save (imputted) data matrix to file? Default is FALSE.

IP

Matrix with previously estimated item parameters: One row per item. The first (Ncat-1) columns contain the between-categories threshold parameters (for the GRM) or the item step difficulties (for the PCM and the GPCM). The last, Ncat-th, column has the slopes.

In case no item parameters are available then IP=NULL.

IRT.PModel

Specify the IRT model to use in order to estimate the item parameters (only if IP=NULL). The options available are "PCM", "GPCM", and "GRM" (default).

Ability

Vector with previoulsy estimated latent ability parameters, one per respondent, following the order of the row index of matrix.

In case no ability parameters are available then Ability=NULL.

Ability.PModel

Specify the method to use in order to estimate the latent ability parameters (only if Ability=NULL). The options available are "EB", "EAP" (default), and "MI".

Details

Statistic lzpoly is the natural extension of lz to polytomously scores items. In this case the user can choose one from three possible IRT models to fit the data: The partial credit model (IRT.PModel="PCM"), the generalized partial credit model (IRT.PModel="GPCM"), or the graded response model (IRT.PModel="GRM"). Ability parameters can be estimated by means of one of three methods: Empirical Bayes (Ability.PModel="EB"), expected a posteriori (Ability.PModel="EAP"), or multiple imputation (Ability.PModel="MI").

The estimation of the model parameters is based on the ltm package. This function will estimate the item and ability parameters when both sets of parameters are missing. It will also estimate one set of parameters in case only the other set is provided. It is possible that some estimation convergence problems occur that may break the function. In this case it is advisable to estimate the model parameters externally and then to run this function with those estimates provided via the commands IP and Ability.

Aberrant response behavior is (potentially) indicated by small values of lzpoly (i.e., in the left tail of the sampling distribution).

Missing values in matrix are dealt with by means of pairwise elimination by default. Alternatively, single imputation is also available. Three single imputation methods exist: Hotdeck imputation (NA.method = "Hotdeck"), nonparametric model imputation (NA.method = "NPModel"), and parametric model imputation (NA.method = "PModel"); see Zhang and Walker (2008).

Value

An object of class "PerFit", which is a list with 12 elements:

PFscores

A list of length N (number of respondents) with the values of the person-fit statistic.

PFstatistic

The person-fit statistic used.

PerfVects

Not applicable.

ID.all0s

Not applicable.

ID.all1s

Not applicable.

matrix

The data matrix after imputation of missing values was performed (if applicable).

Ncat

The number of response categories.

IRT.PModel

The parametric IRT model used.

IP

The IxNcat matrix of estimated item parameters.

Ability.PModel

The method used to estimate abilities used.

Ability

The vector of N estimated ability parameters.

NAs.method

The imputation method used (if applicable).

Author(s)

Jorge N. Tendeiro tendeiro@hiroshima-u.ac.jp

References

Drasgow, F., Levine, M. V., and Williams, E. A. (1985) Appropriateness measurement with polychotomous item response models and standardized indices. British Journal of Mathematical and Statistical Psychology, 38(1), 67–86.

Karabatsos, G. (2003) Comparing the Aberrant Response Detection Performance of Thirty-Six Person-Fit Statistics. Applied Measurement In Education, 16(4), 277–298.

Magis, D., Raiche, G., and Beland, S. (2012) A didactic presentation of Snijders's l[sub]z[/sub] index of person fit with emphasis on response model selection and ability estimation. Journal of Educational and Behavioral Statistics, 37(1), 57–81.

Meijer, R. R., and Sijtsma, K. (2001) Methodology review: Evaluating person fit. Applied Psychological Measurement, 25(2), 107–135.

Molenaar, I. W., and Hoijtink, H. (1990) The many null distributions of person fit indices. Psychometrika, 55(1), 75–106.

Snijders, T. B. (2001) Asymptotic null distribution of person fit statistics with estimated person parameter. Psychometrika, 66(3), 331–342.

Zhang, B., and Walker, C. M. (2008) Impact of missing data on person-model fit and person trait estimation. Applied Psychological Measurement, 32(6), 466–479.

See Also

lz,lzstar

Examples

# Load the physical functioning data (polytomous item scores):
data(PhysFuncData)

# Compute the lzpoly scores:
lzpoly.out <- lzpoly(PhysFuncData,Ncat=3)

[Package PerFit version 1.4.6 Index]