pwefvplus {PWEALL} | R Documentation |
A utility functon
Description
This will calculate the more complex integration accounting for crossover
Usage
pwefvplus(t=seq(0,5,by=0.5),rate1=c(0,5,0.8),rate2=rate1,
rate3=c(0.1,0.2),rate4=rate2,rate5=rate2,
rate6=c(0.5,0.3),tchange=c(0,3),type=1,
rp2=0.5,eps=1.0e-2)
Arguments
t |
A vector of time points |
rate1 |
piecewise constant event rate |
rate2 |
piecewise constant event rate |
rate3 |
piecewise constant event rate |
rate4 |
additional piecewise constant |
rate5 |
additional piecewise constant |
rate6 |
piecewise constant event rate for censoring |
tchange |
a strictly increasing sequence of time points starting from zero at which event rate changes. The first element of tchange must be zero. The above rates and tchange must have the same length. |
type |
type of the crossover, markov, semi-markov and hybrid |
rp2 |
re-randomization prob |
eps |
tolerance |
Details
Let h_1,\ldots,h_6
correspond to rate1
,...,rate6
, and H_1,\ldots,H_6
be the corresponding survival functions. Also let \pi_2=\code{rp2}
.
when type
=1, we calculate
\int_0^t s^k h_2(s)H_2(s)H_6(s)\int_0^s h_3(u)H_1(u)H_3(u)/H_2(u)duds;
when type
=2, we calculate
\int_0^t s^kH_6(s)\int_0^s h_3(u)H_1(u)H_3(u)h_2(s-u)H_2(s-u)duds;
when type
=3, we calculate the sum of
\pi_2\int_0^t s^kH_4^{1-\pi_2}(s)H_6(s)\int_0^s h_3(u)H_1(u)H_3(u)h_2(s-u)H_2^{\pi_2}(s-u)/H_4^{1-\pi_2}(u)duds
and
(1-\pi_2)\int_0^t s^kh_4(s)H_4^{1-\pi_2}(s)H_6(s)\int_0^s h_3(u)H_1(u)H_3(u)H_2^{\pi_2}(s-u)/H_4^{1-\pi_2}(u)duds;
when type
=4, we calculate the sum of
\pi_2\int_0^t s^kH_6(s)\int_0^s h_3(u)H_1(u)H_3(u)h_2(s-u)H_2(s-u)duds
and
(1-\pi_2)\int_0^t s^kh_4(s)H_4(s)H_6(s)\int_0^s h_3(u)H_1(u)H_3(u)/H_4(u)duds;
when type
=5, we calculate the sum of
\pi_2\int_0^t s^kH_6(s)\int_0^s h_3(u)H_1(u)H_3(u)h_2(s-u)H_2(s-u)duds
and
(1-\pi_2)\int_0^t s^kH_6(s)\int_0^s h_3(u)H_1(u)H_3(u)h_4(s-u)H_4(s-u)duds.
Value
f0 |
values when |
f1 |
values when |
f2 |
values when |
Note
This provides the result of the complex integration
Author(s)
Xiaodong Luo
References
Luo et al. (2018) Design and monitoring of survival trials in complex scenarios, Statistics in Medicine <doi: https://doi.org/10.1002/sim.7975>.
See Also
Examples
r1<-c(0.6,0.3)
r2<-c(0.6,0.6)
r3<-c(0.1,0.2)
r4<-c(0.5,0.4)
r5<-c(0.4,0.5)
r6<-c(0.4,0.5)
tchange<-c(0,1.75)
pwefun<-pwefvplus(t=seq(0,5,by=0.5),rate1=r1,rate2=r2,rate3=r3,
rate4=r4,rate5=r5,rate6=r6,
tchange=c(0,3),type=1,eps=1.0e-2)
pwefun