presid {PResiduals} | R Documentation |
Probability-scale residual
Description
presid
calculates the probability-scale residual for various model
function objects. Currently supported models include glm
(Poisson, binomial, and gaussian families), lm
in the
stats library; survreg
(Weibull, exponential, gaussian,
logistic, and lognormal distributions) and coxph
in the
survival library; polr
and glm.nb
in
the MASS library; and ols
, cph
,
lrm
, orm
, psm
, and Glm
in the rms library.
Usage
presid(object, ...)
Arguments
object |
The model object for which the probability-scale residual is calculated |
... |
Additional arguements passed to methods |
Details
Probability-scale residual is P(Y < y) - P(Y > y)
where y
is the observed
outcome and Y
is a random variable from the fitted distribution.
Value
The probability-scale residual for the model
References
Shepherd BE, Li C, Liu Q (2016) Probability-scale residuals for continuous, discrete, and censored data. The Canadian Jouranl of Statistics. 44:463–476.
Li C and Shepherd BE (2012) A new residual for ordinal outcomes. Biometrika. 99: 473–480.
Examples
library(survival)
library(stats)
set.seed(100)
n <- 1000
x <- rnorm(n)
t <- rweibull(n, shape=1/3, scale=exp(x))
c <- rexp(n, 1/3)
y <- pmin(t, c)
d <- ifelse(t<=c, 1, 0)
mod.survreg <- survreg(Surv(y, d) ~ x, dist="weibull")
summary(presid(mod.survreg))
plot(x, presid(mod.survreg))
##### example for proprotional hazards model
n <- 1000
x <- rnorm(n)
beta0 <- 1
beta1 <- 0.5
t <- rexp(n, rate = exp(beta0 + beta1*x))
c <- rexp(n, rate=1)
y <- ifelse(t<c, t, c)
delta <- as.integer(t<c)
mod.coxph <- coxph(Surv(y, delta) ~ x)
presid <- presid(mod.coxph)
plot(x, presid, cex=0.4, col=delta+2)
#### example for Negative Binomial regression
library(MASS)
n <- 1000
beta0 <- 1
beta1 <- 0.5
x <- runif(n, min=-3, max=3)
y <- rnbinom(n, mu=exp(beta0 + beta1*x), size=3)
mod.glm.nb <- glm.nb(y~x)
presid <- presid(mod.glm.nb)
summary(presid)
plot(x, presid, cex=0.4)
##### example for proportional odds model
library(MASS)
n <- 1000
x <- rnorm(n)
y <- numeric(n)
alpha = c(-1, 0, 1, 2)
beta <- 1
py <- (1 + exp(- outer(alpha, beta*x, "+"))) ^ (-1)
aa = runif(n)
for(i in 1:n)
y[i] = sum(aa[i] > py[,i])
y <- as.factor(y)
mod.polr <- polr(y~x, method="logistic")
summary(mod.polr)
presid <- presid(mod.polr)
summary(presid)
plot(x, presid, cex=0.4)