psm {sams} | R Documentation |
Compute the Posterior Pairwise Similarity for All Pairs of Items
Description
Compute the Posterior Pairwise Similarity for All Pairs of Items
Usage
psm(partitions)
Arguments
partitions |
A matrix, with each row a numeric vector cluster labels |
Value
A symmetric matrix of pairwise similarities based on the partitions given.
Examples
# Neal (2000) model and data
nealData <- c(-1.48, -1.40, -1.16, -1.08, -1.02, 0.14, 0.51, 0.53, 0.78)
mkLogPosteriorPredictiveDensity <- function(data = nealData,
sigma2 = 0.1^2,
mu0 = 0,
sigma02 = 1) {
function(i, subset) {
posteriorVariance <- 1 / ( 1/sigma02 + length(subset)/sigma2 )
posteriorMean <- posteriorVariance * ( mu0/sigma02 + sum(data[subset])/sigma2 )
posteriorPredictiveSD <- sqrt(posteriorVariance + sigma2)
dnorm(data[i], posteriorMean, posteriorPredictiveSD, log=TRUE)
}
}
logPostPredict <- mkLogPosteriorPredictiveDensity()
nSamples <- 500L
partitions <- matrix(0, nrow=nSamples, ncol=length(nealData))
for ( i in 2:nSamples ) {
partitions[i,] <- nealAlgorithm3(partitions[i-1,], logPostPredict, mass = 1.0, nUpdates = 2)
}
psm(partitions)
[Package sams version 0.4.3 Index]