estimateDimension {PRISMA} | R Documentation |
Estimate Inner Dimension
Description
Matrix factorization methods compress the original data matrix with
features and
samples into two parts,
namely
with
. The function estimateDimension estimates
based on a noise
model estimated from a scrambled version of the original data matrix.
Usage
estimateDimension(prismaData, alpha = 0.05, nScrambleSamples = NULL)
Arguments
prismaData |
A prismaData object loaded via loadPrismaData |
alpha |
Error probability for confidence intervals |
nScrambleSamples |
The number of scrambled samples that should be used to estimate the noise model. NULL means to use the complete data set. |
Value
estDim |
prismaDimension object that can be printed and plotted. |
Author(s)
Tammo Krueger <tammokrueger@googlemail.com>
References
R. Schmidt. Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and Propagation, 34(3):276 – 280, 1986.
Examples
# please see the vingette for examles
[Package PRISMA version 0.2-7 Index]