PPshapdependence {PPtreeregViz} | R Documentation |
Dependency plot
Description
Dependency plot using PPKernelSHAP
Usage
PPshapdependence(data_long, x, y=NULL, color_feature=NULL, smooth=TRUE)
Arguments
data_long |
|
x |
the independent variable to see |
y |
the interaction effect by putting the values of the independent variables in different colors. |
color_feature |
display other variables with color. Default value is NULL. |
smooth |
geom_smooth option. Default value is TRUE. |
Details
Dependency plots are designed to show the effect of one independent variable on the model's prediction.
Each point corresponds to each row of the training data,
and the y axis corresponds the PPKernelSHAP
value of the variable,
indicating how much knowing the value of the variable changes the output of the model
for the prediction of the data.
Value
An object of the class ggplot
Examples
data(dataXY)
testX <- dataXY[1,-1]
Model <- PPTreereg(Y~., data = dataXY, DEPTH = 2)
shap_long <- ppshapr_prep(Model, final.rule =5, method="simple")
PPshapdependence(shap_long,x = "X1")
[Package PPtreeregViz version 2.0.5 Index]