plexi_embedding_2layer {PLEXI} | R Documentation |
Calculate the embedding space for a two layer multiplex network
Description
Calculate the embedding space for a two layer multiplex network
Usage
plexi_embedding_2layer(
graph.data,
edge.threshold = 0,
train.rep = 50,
embedding.size = 2,
epochs = 10,
batch.size = 5,
l2reg = 0,
walk.rep = 100,
n.steps = 5,
random.walk = TRUE,
null.perm = TRUE,
demo = TRUE,
verbose = FALSE
)
Arguments
graph.data |
dataframe of the graph data containing edge list and edge weights. column 1 and 2 consisting of the edge list (undirected). column 3 and 4 consisting the edge weights corresponding to each graph, respectively. |
edge.threshold |
numeric value to set edge weights below the threshold to zero (default: 0). the greater edge weights do not change. |
train.rep |
numeric value to set the number of EDNN training repeats (default: 50). |
embedding.size |
the dimension of embedding space, equal to the number of the bottleneck hidden nodes (default: 5). |
epochs |
maximum number of pocks. An early stopping callback with a patience of 5 has been set inside the function (default = 10). |
batch.size |
batch size for learning (default = 5). |
l2reg |
the coefficient of L2 regularization for the input layer (default = 0). |
walk.rep |
number of repeats for the random walk (default: 100). |
n.steps |
number of the random walk steps (default: 5). |
random.walk |
boolean value to enable the random walk algorithm (default: TRUE). |
null.perm |
boolean to enable permuting two random graphs and embed them, along with the main two graphs, for the null distribution (default: TRUE). |
demo |
a boolean vector to indicate this is a demo example or not |
verbose |
if TRUE a progress bar is shown. |
Value
a list of embedding spaces for each node.
Examples
myNet = network_gen(n.nodes = 50, n.var.nodes = 5, n.var.nei = 40, noise.sd = .01)
graph_data = myNet[["data_graph"]]
embeddingSpaceList = plexi_embedding_2layer(graph.data=graph_data, train.rep=5, walk.rep=5)