pcovr_est {PCovR} | R Documentation |
Estimation of Principal Covariates Regression parameters, given a prespecified weighting value and number of components
Description
Analyzing regression data with many and/or highly collinear predictor variables, by simultaneously reducing the predictor variables to a given number of components and regressing the criterion variables on these components. A weighting parameter value is specified that determines the extent to which both aspects influence the solution. Cross-validation (Hastie, Tibshirani & Friedman, 2001) options are included.
Usage
pcovr_est(X, Y, r, a, cross = FALSE, fold = "LeaveOneOut")
Arguments
X |
Matrix containing predictor scores (observations x predictors) |
Y |
Matrix containing criterion scores (observations x criteria) |
r |
The desired number of components |
a |
The desired weighting parameter value |
cross |
Logical. If TRUE cross-validation is performed |
fold |
Value of k when performing k-fold cross-validation. By default, leave-one-out cross-validation is performed. |
Value
W |
Component weights matrix (predictors x components) |
B |
Regression weights for predictors (predictors x criteria) |
Rx2 |
Proportion of explained variance in X |
Ry2 |
Proportion of explained variance in Y |
Te |
Component score matrix (observations x components) |
Px |
Loading matrix of components (components x predictors) |
Py |
Regression weights matrix (components x criteria) |
Qy2 |
Cross-validation fit |
Author(s)
Marlies Vervloet (marlies.vervloet@ppw.kuleuven.be)
References
De Jong, S., & Kiers, H. A. (1992). Principal covariates regression: Part I. Theory. Chemometrics and Intelligent Laboratory Systems , 155-164.
Hastie, T., Tibshirani, R., & Friedman, J. (2001). The elements of statistical learning: Data mining, inference and prediction. New York: Springer.
Marlies Vervloet, Henk A. Kiers, Wim Van den Noortgate, Eva Ceulemans (2015). PCovR: An R Package for Principal Covariates Regression. Journal of Statistical Software, 65(8), 1-14. URL http://www.jstatsoft.org/v65/i08/.
Examples
data(alexithymia)
X <- data.matrix(alexithymia$X)
Y <- data.matrix(alexithymia$Y)
results <- pcovr_est(X, Y, r=2, a=.90)
str(results)