predictive_interval.blrmfit {OncoBayes2} | R Documentation |
Posterior predictive intervals
Description
Posterior predictive intervals of the model.
Usage
## S3 method for class 'blrmfit'
predictive_interval(object, prob = 0.95, newdata, ...)
Arguments
object |
fitted model object |
prob |
central probability mass to report, i.e. the quantiles 0.5-prob/2 and 0.5+prob/2 are displayed. Multiple central widths can be specified. |
newdata |
optional data frame specifying for what to predict;
if missing, then the data of the input model |
... |
not used in this function |
Details
Reports for each row of the input data set the predictive interval according to the fitted model.
Value
Matrix with as many rows as the input data set and two
columns which contain the lower and upper quantile
corresponding to the central probability mass prob
for
the number of responses of the predictive distribution.
Examples
## Setting up dummy sampling for fast execution of example
## Please use 4 chains and 100x more warmup & iter in practice
.user_mc_options <- options(OncoBayes2.MC.warmup=10, OncoBayes2.MC.iter=20, OncoBayes2.MC.chains=1,
OncoBayes2.MC.save_warmup=FALSE)
example_model("single_agent", silent=TRUE)
predictive_interval(blrmfit)
## Recover user set sampling defaults
options(.user_mc_options)
[Package OncoBayes2 version 0.8-9 Index]