hist_combo3 {OncoBayes2} | R Documentation |
Dataset: historical and concurrent data on a three-way combination
Description
This dataset involves a hypothetical dose-escalation study of combination
therapy with three treatment components. From two previous studies
HistAgent1
and HistAgent2
, historical data is available on each
of the treatments as single-agents, as well as two of the two-way
combinations. However, due to a difference in treatment schedule between the
Combo
study and the historical studies, a stratification (through stratum_id
)
is made between the groups to allow differential discounting of the
alternate-dose data.
Usage
hist_combo3
Format
A data frame with 18 rows and 7 variables:
- group_id
study
- drug_A
dose of Drug A
- drug_B
dose of Drug B
- drug_C
dose of Drug C
- num_patients
number of patients
- num_toxicities
number of DLTs
- stratum_id
stratum for
group_id
's used for differential discounting
Examples
## Setting up dummy sampling for fast execution of example
## Please use 4 chains and 100x more warmup & iter in practice
.user_mc_options <- options(OncoBayes2.MC.warmup=10, OncoBayes2.MC.iter=20, OncoBayes2.MC.chains=1,
OncoBayes2.MC.save_warmup=FALSE)
## example combo3
library(abind)
dref <- c(500, 500, 1000)
num_comp <- 3
num_inter <- choose(3,2) + 1
num_strata <- nlevels(hist_combo3$stratum_id)
num_groups <- nlevels(hist_combo3$group_id)
blrmfit <- blrm_exnex(
cbind(num_toxicities, num_patients-num_toxicities) ~
1 + I(log(drug_A/dref[1])) |
1 + I(log(drug_B/dref[2])) |
1 + I(log(drug_C/dref[3])) |
0
+ I(drug_A/dref[1] * drug_B/dref[2])
+ I(drug_A/dref[1] * drug_C/dref[3])
+ I(drug_B/dref[2] * drug_C/dref[3])
+ I(drug_A/dref[1] * drug_B/dref[2] * drug_C/dref[3]) |
stratum_id/group_id,
data = hist_combo3,
prior_EX_mu_mean_comp = matrix(c(logit(1/3), 0), nrow = num_comp, ncol = 2, TRUE),
prior_EX_mu_sd_comp = matrix(c(2, 1), nrow = num_comp, ncol = 2, TRUE),
prior_EX_tau_mean_comp = abind(matrix(log( c(0.25, 0.125)), nrow = num_comp, ncol = 2, TRUE),
matrix(log(2*c(0.25, 0.125)), nrow = num_comp, ncol = 2, TRUE),
along = 0),
prior_EX_tau_sd_comp = abind(matrix(log(4) / 1.96, nrow = num_comp, ncol = 2, TRUE),
matrix(log(4) / 1.96, nrow = num_comp, ncol = 2, TRUE),
along = 0),
prior_EX_mu_mean_inter = rep(0, num_inter),
prior_EX_mu_sd_inter = rep(sqrt(2) / 2, num_inter),
prior_EX_tau_mean_inter = matrix(log(0.25), nrow = num_strata, ncol = num_inter),
prior_EX_tau_sd_inter = matrix(log(2) / 1.96, nrow = num_strata, ncol = num_inter),
prior_EX_prob_comp = matrix(0.9, nrow = num_groups, ncol = num_comp),
prior_EX_prob_inter = matrix(1.0, nrow = num_groups, ncol = num_inter),
prior_is_EXNEX_comp = rep(TRUE, num_comp),
prior_is_EXNEX_inter = rep(FALSE, num_inter),
prior_tau_dist = 1,
prior_PD = FALSE
)
## Recover user set sampling defaults
options(.user_mc_options)
[Package OncoBayes2 version 0.8-9 Index]