cosine.similarity.iterative {OmicsQC} | R Documentation |
Tests the accumulated quality scores for outliers using cosine similarity
Description
This function takes quality.scores, trims it and fits it to the distribution given. It then iteratively tests the largest datapoint compared a null distribution of size no.simulations. If the largest datapoint has a significant p-value it tests the 2nd largest one and so on. The function supports the following distributions:
'weibull'
'norm'
'gamma'
'exp'
'lnorm'
'cauchy'
'logis'
Usage
cosine.similarity.iterative(
quality.scores,
no.simulations,
distribution = c("lnorm", "weibull", "norm", "gamma", "exp", "cauchy", "logis"),
trim.factor = 0.05,
alpha.significant = 0.05
)
Arguments
quality.scores |
A dataframe with columns 'Sum' (of scores) and 'Sample', i.e. the output of accumulate.zscores |
no.simulations |
The number of datasets to simulate |
distribution |
A distribution to test, will default to 'lnorm' |
trim.factor |
What fraction of values of each to trim to get parameters without using extremes |
alpha.significant |
Alpha value for significance |
Value
Results in the form of a named list
- no.outliers
Number of nominated outliers
- outlier.labels
Outlier IDs, corresponding to
Sample
column ofquality.scores