olink_qc_plot {OlinkAnalyze} | R Documentation |
Function to plot an overview of a sample cohort per Panel
Description
Generates a facet plot per Panel using ggplot2::ggplot and ggplot2::geom_point and stats::IQR plotting IQR vs. median for all samples. Horizontal dashed lines indicate +/-IQR_outlierDef standard deviations from the mean IQR (default 3). Vertical dashed lines indicate +/-median_outlierDef standard deviations from the mean sample median (default 3).
Usage
olink_qc_plot(
df,
color_g = "QC_Warning",
plot_index = FALSE,
label_outliers = TRUE,
IQR_outlierDef = 3,
median_outlierDef = 3,
outlierLines = TRUE,
facetNrow = NULL,
facetNcol = NULL,
...
)
Arguments
df |
NPX data frame in long format. Must have columns SampleID, NPX and Panel |
color_g |
Character value indicating which column to use as fill color (default QC_Warning) |
plot_index |
Boolean. If FALSE (default), a point will be plotted for a sample. If TRUE, a sample's unique index number is displayed. |
label_outliers |
Boolean. If TRUE, an outlier sample will be labelled with its SampleID. |
IQR_outlierDef |
The number of standard deviations from the mean IQR that defines an outlier (default 3) |
median_outlierDef |
The number of standard deviations from the mean sample median that defines an outlier. (default 3) |
outlierLines |
Draw dashed lines at +/-IQR_outlierDef and +/-median_outlierDef standard deviations from the mean IQR and sample median respectively (default TRUE) |
facetNrow |
The number of rows that the panels are arranged on |
facetNcol |
The number of columns that the panels are arranged on |
... |
coloroption passed to specify color order |
Value
An object of class "ggplot". Scatterplot shows IQR vs median for all samples per panel
Examples
library(dplyr)
olink_qc_plot(npx_data1, color_g = "QC_Warning")
#Change the outlier threshold to +-4SD
olink_qc_plot(npx_data1, color_g = "QC_Warning", IQR_outlierDef = 4, median_outlierDef = 4)
#Identify the outliers
qc <- olink_qc_plot(npx_data1, color_g = "QC_Warning", IQR_outlierDef = 4, median_outlierDef = 4)
outliers <- qc$data %>% filter(Outlier == 1)