NIOZ Westerschelde monitoring {OceanView} | R Documentation |
NIOZ monitoring data of Westerschelde estuary.
Description
Part of the long-term monitoring data of the Westerschelde estuary, from 1996 till 2004.
A total of 17 stations were monitored on a monthly basis.
The dataset WSnioz
is in long format and contains the following variables:
oxygen, temperature, salinity, nitrate, ammonium, nitrite, phosphate,
silicate and chlorophyll.
The dataset WSnioz.table
is in tabular format.
The full dataset can be downloaded from:
https://www.nioz.nl/monitoring-data-downloads
Usage
data(WSnioz)
data(WSnioz.table)
Format
WSnioz
is a data.frame
with the following columns:
-
SamplingDateTime
, a string with the date and time of sampling. -
SamplingDateTimeREAL
, a numeric value with day as per 1900. -
Station
, the station number. -
Latitude
,Longitude
, the station position. -
VariableName
, the variable acronym. -
VariableDesc
, description of the variable. -
VariableUnits
, units of measurement. -
DataValue
, the actual measurement.
Author(s)
Karline Soetaert <karline.soetaert@nioz.nl>
References
Soetaert, K., Middelburg, JJ, Heip, C, Meire, P., Van Damme, S., Maris, T., 2006. Long-term change in dissolved inorganic nutrients in the heterotrophic Scheldt estuary (Belgium, the Netherlands). Limnology and Oceanography 51: 409-423. DOI: 10.4319/lo.2006.51.1_part_2.0409
http://aslo.org/lo/toc/vol_51/issue_1_part_2/0409.pdf
See Also
image2D for plotting images, package plot3D
.
ImageOcean for an image of the ocean's bathymetry, package plot3D
.
scatter2D for making scatterplots, package plot3D
.
Oxsat for a 3-D data set, package plot3D
.
Examples
# save plotting parameters
pm <- par("mfrow")
mar <- par("mar")
## =============================================================================
## Show stations and measured variables
## =============================================================================
unique(WSnioz[,c("Station", "Latitude", "Longitude")])
unique(WSnioz[,c("VariableName", "VariableDesc")])
## =============================================================================
## An image for Nitrate:
## =============================================================================
# 1. use db2cross to make a cross table of the nitrate data
# assume that samples that were taken within 5 days belong to the same
# monitoring campaign (df.row).
NO3 <- db2cross(WSnioz, row = "SamplingDateTimeREAL",
col = "Station", val = "DataValue",
subset = (VariableName == "WNO3"), df.row = 5)
# 2. plot the list using image2D; increase resolution
image2D(NO3, resfac = 3)
## =============================================================================
## All timeseries for one station
## =============================================================================
st1 <- db2cross(WSnioz, row = "SamplingDateTimeREAL",
col = "VariableName", val = "DataValue",
subset = (WSnioz$Station == 1), df.row = 5)
Mplot(cbind(st1$x/365+1900,st1$z))
## =============================================================================
## All timeseries for multiple stations
## =============================================================================
dat <- NULL
for (st in 1:17) {
dd <- db2cross(WSnioz, row = "SamplingDateTimeREAL",
col = "VariableName", val = "DataValue",
subset = (WSnioz$Station == st), df.row = 5)
dat <- rbind(dat, cbind(st, time = dd$x/365+1900, dd$z))
}
# select data for station 1, 17
dat2 <- Msplit(dat, split = "st", subset = st %in% c(1, 17))
names(dat2)
Mplot(dat2, lty = 1)
## =============================================================================
## tabular format of the same data
## =============================================================================
head(WSnioz.table)
# plot all data from station 1:
Mplot(WSnioz.table, select = 3:11, subset = Station == 1, legend = FALSE)
Mplot(Msplit(WSnioz.table, "Station", subset = Station %in% c(1, 13)) ,
select = c("WNO3", "WNO2", "WNH4", "WO2"), lty = 1, lwd = 2,
xlab = "Daynr", log = c("y", "y", "y", ""),
legend = list(x = "left", title = "Station"))
# reset plotting parameters
par(mar = mar)
par(mfrow = pm)