otplot {OTclust} | R Documentation |
Visualize a partition on 2 dimensional space
Description
This function plots a partition on 2 dimensional reduced space.
Usage
otplot(
data,
labels,
convex.hull = F,
title = "",
xlab = "",
ylab = "",
legend.title = "",
legend.labels = NULL,
add.text = T
)
Arguments
data |
– coordinates matrix of data. |
labels |
– cluster labels in a vector, the first cluster is labeled as 1. |
convex.hull |
– logical. If it is |
title |
– title |
xlab |
– xlab |
ylab |
– ylab |
legend.title |
– legend title |
legend.labels |
– legend labels |
add.text |
– default True |
Value
none
Examples
data(sim1)
# the number of clusters.
C = 4
ens.data = ensemble(sim1$X[1:50,], nbs=50, clust_param=C, clustering="kmeans", perturb_method=1)
# find mean partition and uncertainty statistics.
ota = otclust(ens.data)
# calculate baseline method for comparison.
kcl = kmeans(sim1$X[1:50],C)
# align clustering results for convenience of comparison.
compar = align(cbind(sim1$z[1:50],kcl$cluster,ota$meanpart))
lab.match = lapply(compar$weight,function(x) apply(x,2,which.max))
kcl.algnd = match(kcl$cluster,lab.match[[1]])
ota.algnd = match(ota$meanpart,lab.match[[2]])
# plot the result on two dimensional space.
otplot(sim1$X[1:50,],ota.algnd,con=FALSE,title='Mean partition') # mean partition by OTclust
[Package OTclust version 1.0.6 Index]