BreakDiagnostic {NetworkChange} | R Documentation |
Detect a break number using different metrics
Description
Detect a break number using different metrics
Usage
BreakDiagnostic(
Y,
R = 2,
mcmc = 100,
burnin = 100,
verbose = 100,
thin = 1,
UL.Normal = "Orthonormal",
v0 = NULL,
v1 = NULL,
break.upper = 3,
a = 1,
b = 1
)
Arguments
Y |
Reponse tensor |
R |
Dimension of latent space. The default is 2. |
mcmc |
The number of MCMC iterations after burnin. |
burnin |
The number of burn-in iterations for the sampler. |
verbose |
A switch which determines whether or not the progress of the
sampler is printed to the screen. If |
thin |
The thinning interval used in the simulation. The number of MCMC iterations must be divisible by this value. |
UL.Normal |
Transformation of sampled U. Users can choose "NULL", "Normal" or "Orthonormal." "NULL" is no normalization. "Normal" is the standard normalization. "Orthonormal" is the Gram-Schmidt orthgonalization. Default is "NULL." |
v0 |
|
v1 |
|
break.upper |
Upper threshold for break number detection.
The default is |
a |
|
b |
|
References
Jong Hee Park and Yunkyun Sohn. 2020. "Detecting Structural Change in Longitudinal Network Data." Bayesian Analysis. Vol.15, No.1, pp.133-157.
Examples
## Not run:
set.seed(19333)
## Generate an array (15 by 15 by 20) with a block merging transition
Y <- MakeBlockNetworkChange(n=5, T=20, type ="merge")
## Fit 3 models (no break, one break, and two break) for break number detection
detect <- BreakDiagnostic(Y, R=2, break.upper = 2)
## Look at the graph
detect[[1]]; print(detect[[2]])
## End(Not run)