iHazardRateEst {NPHazardRate} | R Documentation |
Kernel Integrated Hazard Rate Estimation
Description
Implements the integrated kernel hazard rate estimator for right censored data, i.e. a kernel estimate of the cummulative hazard function.
Usage
iHazardRateEst(xin, xout, ikfun, h, ci)
Arguments
xin |
A vector of data points. Missing values not allowed. |
xout |
A vector of grid points at which the estimates will be calculated. |
ikfun |
Integrated kernel function to use |
h |
A scalar, the bandwidth to use in the estimate. |
ci |
A vector of censoring indicators: 1's indicate uncensored observations, 0's correspond to censored obs. |
Details
The function iHazardRateEst
implements the cummulative hazard rate estimator \hat \Lambda(x; h_1)
given by
\hat \Lambda(x; h_1) = \sum_{i=1}^n \frac{k\left \{(x-X_{(i)})h_1^{-1}\right \}\delta_{(i)}}{n-i+1}
where
k(x) = \int_{-\infty}^x K(y)\,dy
Note that iHazardRateEst
is used in the implementation of the transformed hazard rate estimate TransHazRateEst
.
Value
A vector with the cummulative hazard rate estimates at the designated points xout.
References
See Also
VarBandHazEst, TransHazRateEst, PlugInBand
Examples
x<-seq(0, 5,length=100) #design points where the estimate will be calculated
SampleSize <- 100
ti<- rweibull(SampleSize, .6, 1) #draw a random sample from the actual distribution
ui<-rexp(SampleSize, .2) #draw a random sample from the censoring distribution
cat("\n AMOUNT OF CENSORING: ", length(which(ti>ui))/length(ti)*100, "\n")
x1<-pmin(ti,ui) #this is the observed sample
cen<-rep.int(1, SampleSize) #censoring indicators
cen[which(ti>ui)]<-0 #censored values correspond to zero
huse<-PlugInBand(x1, x, cen, Biweight)
arg2<-iHazardRateEst(x1, x, IntEpanechnikov, huse, cen) #Calculate the estimate