bw.modalreg.circ.lin {NPCirc} | R Documentation |
Smoothing parameter selection for circular multimdodal regression
Description
Function bw.modalreg.circ.lin
provides the modal cross-validation smoothing parameters for the multimodal regression estimator when the covariate is circular and the response variable is linear.
Function bw.modalreg.circ.circ
provides the modal cross-validation smoothing parameters for the multimodal regression estimator when the covariate and the response variable are circular.
Function bw.modalreg.lin.circ
provides the modal cross-validation smoothing parameters for the multimodal regression estimator when the covariate is linear and the response variable is circular.
Usage
bw.modalreg.circ.lin(x, y, lower = NULL, upper = NULL, maxit = 500, tol = 0.00001)
bw.modalreg.circ.circ(x, y, lower = NULL, upper = NULL, maxit = 500, tol = 0.00001)
bw.modalreg.lin.circ(x, y, lower = NULL, upper = NULL, maxit = 500, tol = 0.00001)
Arguments
x |
Vector of data for the independent variable. The object is coerced to class circular when using functions bw.modalreg.circ.lin and bw.modalreg.circ.circ. |
y |
Vector of data for the dependent variable. This must be same length as x. The object is coerced to class circular when using functions bw.modalreg.circ.circ and bw.modalreg.lin.circ. |
lower , upper |
Vectors of length two with the |
maxit |
Maximum number of iterations in the estimation through the conditional (circular) mean shift. |
tol |
Tolerance parameter for convergence in the estimation through the conditional (circular) mean shift. |
Details
See Alonso-Pena and Crujeiras (2022) for details.
The NAs will be automatically removed.
Value
A vector of length two with the first component being the value of the smoothing parameter associated to the predictor variable and with the second component being the value of the smoothing parameter associated to the response variable.
Author(s)
Maria Alonso-Pena and Rosa M. Crujeiras.
References
Alonso-Pena, M. and Crujeiras, R. M. (2022). Analizing animal escape data with circular nonparametric multimodal regression. Annals of Applied Statistics. (To appear).
See Also
modalreg.circ.lin
, modalreg.circ.circ
, modalreg.lin.circ
Examples
# Circ-lin
set.seed(8833)
n1<-100
n2<-100
gamma<-8
sigma<-1.5
theta1<-rcircularuniform(n1)
theta2<-rcircularuniform(n2)
theta<-c(theta1,theta2)
y1<-2*sin(2*theta1)+rnorm(n1,sd=sigma)
y2<-gamma+2*sin(2*theta2)+rnorm(n2,sd=sigma)
y<-as.numeric(c(y1,y2))
bw<-bw.modalreg.circ.lin(theta, y)
# Lin-circ
n1<-100
n2<-100
con<-8
set.seed(8833)
x1<-runif(n1)
x2<-runif(n2)
phi1<-(6*atan(2.5*x1-3)+rvonmises(n1,m=0,k=con))
phi2<-(pi+6*atan(2.5*x2-3)+rvonmises(n2,m=0,k=con))
x<-c(x1,x2)
phi<-c(phi1,phi2)
bw<-bw.modalreg.lin.circ(x, phi)
# Circ-circ
n1<-100
n2<-100
con<-10
set.seed(8833)
theta1<-rcircularuniform(n1)
theta2<-rcircularuniform(n2)
phi1<-(2*cos(theta1)+rvonmises(n1,m=0,k=con))
phi2<-(3*pi/4+2*cos(theta2)+rvonmises(n2,m=0,k=con))
theta=c(theta1,theta2)
phi=c(phi1,phi2)
bw<-bw.modalreg.lin.circ(theta, phi)