nma {NMA} | R Documentation |
Network meta-analysis based on contrast-based approach using the multivariate meta-analysis model
Description
Network meta-analysis based on contrast-based approach using the multivariate random-effects meta-analysis model. The synthesis results and prediction intervals based on the consistency assumption are provided. The ordinary REML method and its improved higher order asymptotic methods (Noma-Hamura methods) are available.
Usage
nma(x, eform=FALSE, method="NH")
Arguments
x |
Output object of |
eform |
A logical value that specify whether the outcome should be transformed by exponential function (default: FALSE) |
method |
Estimation and prediction method. |
Value
Results of the network meta-analysis using the multivariate meta-analysis model.
-
coding
: A table that presents the correspondence between the numerical code and treatment categories (the reference category is coded as 1). -
reference
: Reference treatment category. -
number of studies
: The number of synthesized studies. -
method
: The estimation and prediction methods. -
Coef. (vs. treat1)
: Estimates, their SEs, Wald-type 95% confidence intervals, and P-values for the grand mean parameter vector. -
tau (Between-studies_SD) estimate
: Between-studies SD (tau) estimate. -
tau2 (Between-studies_variance) estimate
: Between-studies variance (tau^2) estimate. -
Multivariate H2-statistic
: Jackson's multivariate H2-statistic. -
Multivariate I2-statistic
: Jackson's multivariate I2-statistic. -
Test for Heterogeneity
: Multivariate Q-statistic and P-value of the test for heterogeneity. -
95%PI
: 95% prediction intervals.
References
Jackson, D., White, I. R., Riley, R. D. (2012). Quantifying the impact of between-study heterogeneity in multivariate meta-analyses. Statistics in Medicine 31: 3805-3820.
Nikolakopoulou, A., White, I. R., and Salanti, G. (2021). Network meta-analysis. In: Schmid, C. H., Stijnen, T., White, I. R., eds. Handbook of Meta-Analysis. CRC Press; pp. 187-217.
Noma, H., Hamura, Y., Gosho, M., and Furukawa, T. A. (2023). Kenward-Roger-type corrections for inference methods of network meta-analysis and meta-regression. Research Synthesis Methods 14, 731-741.
Noma, H., Hamura, Y., Sugasawa, S., and Furukawa, T. A. (2023). Improved methods to construct prediction intervals for network meta-analysis. Research Synthesis Methods 14, 794-806.
White, I. R., Barrett, J. K., Jackson, D., and Higgins, J. P. (2012). Consistency and inconsistency in network meta-analysis: model estimation using multivariate meta-regression. Research Synthesis Methods 3, 111-125.
Examples
data(heartfailure)
hf2 <- setup(study=study,trt=trt,d=d,n=n,measure="OR",ref="Placebo",data=heartfailure)
hf3 <- setup(study=study,trt=trt,d=d,n=n,measure="RR",ref="Placebo",data=heartfailure)
hf4 <- setup(study=study,trt=trt,d=d,n=n,measure="RD",ref="Placebo",data=heartfailure)
nma(hf2, eform=TRUE)
nma(hf3, eform=TRUE)
nma(hf4)