| CItran.fun {NHPoisson} | R Documentation | 
Confidence intervals for  \lambda(t) based on transformation 
Description
Given the  \hat \beta covariance matrix (or its estimation),  an approximate
confidence interval for each \lambda(t)=\exp(\nu(t)) is calculated using a transformation of 
the confidence interval for the linear
predictor \nu(t)=\textbf{X(t)} \beta. The transformation is \exp(I_i), 
where I_i are the confidence limits of \nu(t).
Usage
CItran.fun(VARbeta, lambdafit, covariates, clevel = 0.95)Arguments
| VARbeta | (Estimated) Coariance matrix of the  | 
| lambdafit | Numeric vector of fitted values of the PP intensity  
 | 
| covariates | Matrix of covariates to estimate the PP intensity. | 
| clevel | Confidence level of the confidence intervals. A value in the interval (0,1). | 
Value
A list with elements
| LIlambda | Numeric vector of the lower values of the intervals. | 
| UIlambda | Numeric vector of the upper values of the intervals. | 
| lambdafit | Input argument. | 
Note
fitPP.fun calls CItran.fun  when  the argument is CIty='Transf'.
References
Casella, G. and Berger, R.L., (2002). Statistical inference. Brooks/Cole.
Cebrian, A.C., Abaurrea, J. and Asin, J. (2015). NHPoisson: An R Package for Fitting and Validating Nonhomogeneous Poisson Processes. Journal of Statistical Software, 64(6), 1-24.
See Also
CIdelta.fun, fitPP.fun, VARbeta.fun
Examples
aux<-CItran.fun(VARbeta=0.01, lambdafit=exp(rnorm(100)), covariates=matrix(rep(1,100)),
	 clevel=0.95)