CItran.fun {NHPoisson} | R Documentation |
Confidence intervals for \lambda(t)
based on transformation
Description
Given the \hat \beta
covariance matrix (or its estimation), an approximate
confidence interval for each \lambda(t)=\exp(\nu(t))
is calculated using a transformation of
the confidence interval for the linear
predictor \nu(t)=\textbf{X(t)} \beta
. The transformation is \exp(I_i)
,
where I_i
are the confidence limits of \nu(t)
.
Usage
CItran.fun(VARbeta, lambdafit, covariates, clevel = 0.95)
Arguments
VARbeta |
(Estimated) Coariance matrix of the |
lambdafit |
Numeric vector of fitted values of the PP intensity
|
covariates |
Matrix of covariates to estimate the PP intensity. |
clevel |
Confidence level of the confidence intervals. A value in the interval (0,1). |
Value
A list with elements
LIlambda |
Numeric vector of the lower values of the intervals. |
UIlambda |
Numeric vector of the upper values of the intervals. |
lambdafit |
Input argument. |
Note
fitPP.fun
calls CItran.fun
when the argument is CIty='Transf'.
References
Casella, G. and Berger, R.L., (2002). Statistical inference. Brooks/Cole.
Cebrian, A.C., Abaurrea, J. and Asin, J. (2015). NHPoisson: An R Package for Fitting and Validating Nonhomogeneous Poisson Processes. Journal of Statistical Software, 64(6), 1-24.
See Also
CIdelta.fun
, fitPP.fun
, VARbeta.fun
Examples
aux<-CItran.fun(VARbeta=0.01, lambdafit=exp(rnorm(100)), covariates=matrix(rep(1,100)),
clevel=0.95)