SampleGC {MultiStatM} | R Documentation |
Gram-Charlier approximation to a multivariate density
Description
Provides the truncated Gram-Charlier approximation to a multivariate density. Approximation can be up to the first k=8 cumulants.
Usage
SampleGC(X, k = 4, cum = NULL)
Arguments
X |
A matrix of d-variate data |
k |
the order of the approximation, by default set to 4; (k must not be smaller than 3 or greater than 8) |
cum |
if NULL (default) the cumulant vector is estimated from X.
If |
Value
The vector of the Gram-Charlier density evaluated at X
References
Gy.Terdik, Multivariate statistical methods - Going beyond the linear, Springer 2021. Section 4.7.
Examples
# Gram-Charlier density approximation (k=4) of data generated from
# a bivariate skew-gaussian distribution
n<-50
alpha<-c(10,0)
omega<-diag(2)
X<-rSkewNorm(n,omega,alpha)
EC<-SampleEVSK(X)
fy4<-SampleGC(X[1:5,],cum=EC)
[Package MultiStatM version 2.0.0 Index]