EVSKUniS {MultiStatM}R Documentation

EVSK of the Uniform distribution on the sphere or its modulus

Description

Cumulants (up to the 4th order), skewness, and kurtosis of the d-variate Uniform distribution on the sphere or the modulus of the d-variate Uniform distribution on the sphere.

Usage

EVSKUniS(d, nCum = TRUE, Type = c("Standard", "Modulus"))

Arguments

d

dimensions

nCum

if it is FALSE then moments (up to the 4th order) are calculated.

Type

specify the type of distribution: "Standard" for the Uniform distribution on the sphere, or "Modulus" for the modulus of the Uniform distribution on the sphere.

Value

A list of computed moments and cumulants.

When Type is "Standard":

EU1

Mean vector

varU

Covariance matrix

Skew.U

Skewness vector (always zero)

Skew.tot

Total skewness (always zero)

Kurt.U

Kurtosis vector

Kurt.tot

Total kurtosis

When Type is "Modulus":

EU1

Mean vector

varU

Covariance matrix

EU.k

List of moments up to 4th order

cumU.k

List of cumulants up to 4th order

skew.U

Skewness vector

kurt.U

Kurtosis vector

References

Gy. Terdik, Multivariate statistical methods - Going beyond the linear, Springer 2021 Proposition 5.3 p.297

S. R. Jammalamadaka, E. Taufer, Gy. Terdik. On multivariate skewness and kurtosis. Sankhya A, 83(2), 607-644.

Gy. Terdik, Multivariate statistical methods - Going beyond the linear, Springer 2021, Lemma 5.12 p.298

See Also

Other Moments and cumulants: Cum2Mom(), EVSKSkewNorm(), Mom2Cum(), MomCumCFUSN(), MomCumSkewNorm(), MomCumUniS(), MomCumZabs()

Examples

# Example for Standard type
EVSKUniS(d=3, Type="Standard")

# Example for Modulus type
EVSKUniS(d=3, Type="Modulus")

[Package MultiStatM version 2.0.0 Index]