addBalance | Add fine balance edges |
addExclusion | Add exclusion edges |
balanceCosts | Create a skeleton representation of the balance edge costs |
build.dist.struct | An internal helper function that generates the data abstraction for the edge weights of the main network structure. |
build.dist.struct_user | An internal helper function that generates the data abstraction for the edge weights of the main network structure using the distance matrix passed by the user. |
callrelax | Call relax on the network |
check_representative | Check the representativeness of matched treated units |
combine_dist | An internal helper function that combines two distance object |
combine_match_result | Combine two matching result |
compare_matching | Generate covariate balance in different matches |
compare_tables | Summarize covariate balance table |
convert_index | An internal helper function that translates the matching index in the sorted data frame to the original dataframe's row index |
convert_names | Internal helper function that converts axis name to internal variable name |
costSkeleton | Create cost skeleton |
data_precheck | Data precheck: Handle missing data(mean imputation) and remove redundant columns; it also adds an NA column for indicating whether it's missing |
descr.stats_general | Generate summary statistics for matches |
distanceFunctionHelper | Helper function that change input distance matrix |
dist_bal_match | Optimal tradeoffs among distance, exclusion and marginal imbalance |
dummy | This is a modified version of the function "dummy" from the R package dummies. Original code Copyright (c) 2011 Decision Patterns. |
edgelist2ISM | Change the edgelist to the infinity sparse matrix |
excludeCosts | Create a skeleton representation of the exclusion edge costs |
extractEdges | Extract edges from the network |
extractSupply | Extract the supply nodes from the net |
filter_match_result | Filter match result |
flattenSkeleton | Turns a skeleton representation of edge costs in a network |
generateRhoObj | Penalty and objective values summary |
generate_rhos | Generate rho pairs |
getExactOn | Generate a factor for exact matching. |
getPropensityScore | Fit propensity scores using logistic regression. |
get_balance_table | Generate balance table |
get_five_index | An internal helper function that gives the index of matching with a wide range of number of treated units left unmatched |
get_pairdist_balance_graph | Total variation imbalance vs. marginal imbalance |
get_pairdist_graph | Distance vs. exclusion |
get_rho_obj | Penalty and objective values summary |
get_tv_graph | Marginal imbalance vs. exclusion |
get_unmatched | Get unmatched percentage |
makeInfinitySparseMatrix | Internal helper to build infinity sparse matrix |
makeSparse | Helper function to mask edges |
matched_data | Get matched dataframe |
matched_index | An internal helper function that translate the matching index in the sorted data frame to the original dataframe's row index |
matrix2cost | change the distance matrix to cost |
matrix2edgelist | Helper function to convert matrix to list |
meldMask | Helper function to combine two sparse distances |
netFlowMatch | Create network flow structure |
obj.to.match | An internal helper function that transforms the output from the RELAX algorithm to a data structure that is more interpretable for the output of the main matching function |
pairCosts | Create a skeleton representation of the edge costs |
rho_proposition | Generate penalty coefficient pairs |
solveP | Solve the network flow problem - basic version |
solveP1 | Solve the network flow problem - twoDistMatch |
summary.multiObjMatch | Generate numerical summary |
two_dist_match | Optimal tradeoffs among two distances and exclusion |
visualize | Visualize tradeoffs |