Multi-Objective Matching Algorithm


[Up] [Top]

Documentation for package ‘MultiObjMatch’ version 1.0.0

Help Pages

addBalance Add fine balance edges
addExclusion Add exclusion edges
balanceCosts Create a skeleton representation of the balance edge costs
build.dist.struct An internal helper function that generates the data abstraction for the edge weights of the main network structure.
build.dist.struct_user An internal helper function that generates the data abstraction for the edge weights of the main network structure using the distance matrix passed by the user.
callrelax Call relax on the network
check_representative Check the representativeness of matched treated units
combine_dist An internal helper function that combines two distance object
combine_match_result Combine two matching result
compare_matching Generate covariate balance in different matches
compare_tables Summarize covariate balance table
convert_index An internal helper function that translates the matching index in the sorted data frame to the original dataframe's row index
convert_names Internal helper function that converts axis name to internal variable name
costSkeleton Create cost skeleton
data_precheck Data precheck: Handle missing data(mean imputation) and remove redundant columns; it also adds an NA column for indicating whether it's missing
descr.stats_general Generate summary statistics for matches
distanceFunctionHelper Helper function that change input distance matrix
dist_bal_match Optimal tradeoffs among distance, exclusion and marginal imbalance
dummy This is a modified version of the function "dummy" from the R package dummies. Original code Copyright (c) 2011 Decision Patterns.
edgelist2ISM Change the edgelist to the infinity sparse matrix
excludeCosts Create a skeleton representation of the exclusion edge costs
extractEdges Extract edges from the network
extractSupply Extract the supply nodes from the net
filter_match_result Filter match result
flattenSkeleton Turns a skeleton representation of edge costs in a network
generateRhoObj Penalty and objective values summary
generate_rhos Generate rho pairs
getExactOn Generate a factor for exact matching.
getPropensityScore Fit propensity scores using logistic regression.
get_balance_table Generate balance table
get_five_index An internal helper function that gives the index of matching with a wide range of number of treated units left unmatched
get_pairdist_balance_graph Total variation imbalance vs. marginal imbalance
get_pairdist_graph Distance vs. exclusion
get_rho_obj Penalty and objective values summary
get_tv_graph Marginal imbalance vs. exclusion
get_unmatched Get unmatched percentage
makeInfinitySparseMatrix Internal helper to build infinity sparse matrix
makeSparse Helper function to mask edges
matched_data Get matched dataframe
matched_index An internal helper function that translate the matching index in the sorted data frame to the original dataframe's row index
matrix2cost change the distance matrix to cost
matrix2edgelist Helper function to convert matrix to list
meldMask Helper function to combine two sparse distances
netFlowMatch Create network flow structure
obj.to.match An internal helper function that transforms the output from the RELAX algorithm to a data structure that is more interpretable for the output of the main matching function
pairCosts Create a skeleton representation of the edge costs
rho_proposition Generate penalty coefficient pairs
solveP Solve the network flow problem - basic version
solveP1 Solve the network flow problem - twoDistMatch
summary.multiObjMatch Generate numerical summary
two_dist_match Optimal tradeoffs among two distances and exclusion
visualize Visualize tradeoffs