WeightedPCoA {MultBiplotR} | R Documentation |
Weighted Principal Coordinates Analysis
Description
Weighted Principal Coordinates Analysis
Usage
WeightedPCoA(Proximities,
weigths = matrix(1,dim(Proximities$Proximities)[1],1),
dimension = 2, tolerance=0.0001)
Arguments
Proximities |
A matrix containing the proximities among a set of objetcs |
weigths |
Weigths |
dimension |
Dimension of the solution |
tolerance |
Tolerance for the eigenvalues |
Details
Weighted Principal Coordinates Analysis
Value
data(spiders)
dist=BinaryProximities(spiders)
pco=WeightedPCoA(dist)
An object of class Principal.Coordinates
Author(s)
Jose Luis Vicente-Villardon
References
Gower, J. C. (2006) Similarity dissimilarity and Distance, measures of. Encyclopedia of Statistical Sciences. 2nd. ed. Volume 12. Wiley
Gower, J.C. (1966). Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53: 325-338.
J.R. Demey, J.L. Vicente-Villardon, M.P. Galindo, A.Y. Zambrano, Identifying molecular markers associated with classifications of genotypes by external logistic biplot, Bioinformatics 24 (2008) 2832.
Cuadras, C. M., Fortiana, J. Metric scaling graphical representation of Categorical Data. Proceedings of Statistics Day, The Center for Multivariate Analysis, Pennsylvania State University, Part 2, pp.1-27, 1995.
See Also
Examples
data(spiders)
dist=BinaryProximities(spiders)
pco=WeightedPCoA(dist)