| Unfolding {MultBiplotR} | R Documentation | 
Multidimensional Unfolding
Description
Multidimensional Unfolding with some adaptations for vegetation analysis
Usage
Unfolding(A, ENV = NULL, TransAbund = "Gaussian Columns", offset = 0.5, 
weight = "All_1", Constrained = FALSE, 
TransEnv = "Standardize columns", 
InitConfig = "SVD", model = "Ratio", 
condition = "Columns", Algorithm = "SMACOF", 
OptimMethod = "CG", r = 2, maxiter = 100, 
tolerance = 1e-05, lambda = 1, omega = 0, plot = FALSE)
Arguments
| A | The original proximities matrix | 
| ENV | The matrix of environmental variables | 
| TransAbund | Initial transformation of the abundances : "None", "Gaussian", "Column Percent", "Gaussian Columns", "Inverse Square Root", "Divide by Column Maximum") | 
| offset | offset is the quantity added to the zeros of the table | 
| weight | A matrix of weights for each cell of the table | 
| Constrained | Should fit a constrained analysis | 
| TransEnv | Transformation of the environmental variables | 
| InitConfig | Init configuration for the algorithm | 
| model | Type of model to be fitted: "Identity", "Ratio", "Interval" or "Ordinal". | 
| condition | "Matrix", "Columns" to condition to the whole matrix or to each column | 
| Algorithm | Algorithm to fit the model: "SMACOF", "GD", "Genefold" | 
| OptimMethod | Optimization method for gradient descent | 
| r | Dimension of the solution | 
| maxiter | Maximum number of iterations in the algorithm | 
| tolerance | Tolerace for the algorithm | 
| lambda | First penalization parameter | 
| omega | Second penalization parameter | 
| plot | Should the results be plotted? | 
Details
ological data
Value
An object of class "Unfolding"
Author(s)
Jose Luis Vicente Villardon
References
Ver Articulos
Examples
unf=Unfolding(SpidersSp, ENV=SpidersEnv, model="Ratio", Constrained = FALSE, condition="Matrix")
plot(unf, PlotTol=TRUE, PlotEnv = FALSE)
plot(unf, PlotTol=TRUE, PlotEnv = TRUE)
cbind(unf$QualityVars, unf$Var_Fit)
unf2=Unfolding(SpidersSp, ENV=SpidersEnv, model="Ratio", Constrained = TRUE, condition="Matrix")
plot(unf2, PlotTol=FALSE, PlotEnv = TRUE, mode="s")
cbind(unf2$QualityVars, unf2$Var_Fit)