Biplot.PLSRBIN {MultBiplotR} | R Documentation |
Biplot for a PLSR model with binary responses
Description
Builds a Biplot for a PLSR model with binary responses
Usage
Biplot.PLSRBIN(plsr, BinBiplotType = 1)
Arguments
plsr |
A PLSRBin object |
BinBiplotType |
The type of biplot: 1:The biplot resulting from the fit, for the binary responses. 2: The biplot for the coefficients |
Details
Builds a Biplot for a PLSR model with binary responses. The result is a biplot for the matrix with the predictors (X) adding the binary responses as suplementary variables. There are two possible types, 1 for the biplot directly obtained in the fit ( the default) and 2 for the biplot obtaines after refitting the binary variables using Ridge Logistic Regression.
Value
An object of class ContinuousBiplot
Author(s)
Jose Luis Vicente Villardon
References
Ugarte Fajardo, J., Bayona Andrade, O., Criollo Bonilla, R., Cevallos‐Cevallos, J., Mariduena‐Zavala, M., Ochoa Donoso, D., & Vicente Villardon, J. L. (2020). Early detection of black Sigatoka in banana leaves using hyperspectral images. Applications in plant sciences, 8(8), e11383.
Examples
X=as.matrix(wine[,4:21])
Y=cbind(Factor2Binary(wine[,1])[,1], Factor2Binary(wine[,2])[,1])
rownames(Y)=wine[,3]
colnames(Y)=c("Year", "Origin")
pls=PLSRBin(Y,X, penalization=0.1, show=TRUE, S=2)
plsbip=Biplot.PLSRBIN(pls, BinBiplotType=1)
plsbip=AddCluster2Biplot(plsbip, ClusterType = "us",
Groups = wine$Group)
plot(plsbip, margin=0.05, mode="s", PlotClus = TRUE,
ModeSupBinVars = "s", ShowAxis = FALSE,
ColorSupBinVars = "blue", CexInd=0.5,
ClustCenters = TRUE, LabelInd = FALSE, ShowBox = TRUE)