False Discovery Rates for Spatial Signals {MixfMRI} | R Documentation |
False Discovery Rates for Spatial Signals using Benjamini and Heller (2007)
Description
Compute q-values Benjamini and Heller's (2007) approach for controlling FDR for spatial signals.
Usage
fdr.bh.p1(p, w = rep(1, length(p)), q = 0.05)
fdr.bh.p2(p, w = rep(1, length(p)), q = 0.05)
Arguments
p |
a p-value vector. No NA is allowed and all values are in [0, 1]. |
w |
a weight vector for p-values. |
q |
a desired cutoff for adjusting p-values. |
Details
These functions implement first two procedures in Benjamini and Heller (2007) for controlling FDR for spatial signals.
Value
Return the number of rejected hypotheses and all corresponding q-values for the input p-values.
Author(s)
Wei-Chen Chen.
References
Chen, W.-C. and Maitra, R. (2021) “A Practical Model-based Segmentation Approach for Accurate Activation Detection in Single-Subject functional Magnetic Resonance Imaging Studies”, arXiv:2102.03639.
See Also
qvalue()
.
Examples
library(MixfMRI, quietly = TRUE)
set.seed(1234)
da <- gendataset(phantom = shepp1fMRI, overlap = 0.01)
p <- da$pval[!is.na(da$pval)][1:100]
fdr.bh.p1(p)
fdr.bh.p2(p)
[Package MixfMRI version 0.1-3 Index]