Likelihood Mixture Tests with Identity Cov Matrix or Only p-values {MixfMRI} | R Documentation |
Likelihood Mixture Tests with Identity Cov Matrix or Only p-values
Description
These functions test two mixture Gaussian fMRI models with diagonal
covariance matrices and different numbers of clusters.
These functions are similar to the EMCluster::lmt(
), but is coded
for fMRI models in MixfMRI.
Usage
lmt.I(fcobj.0, fcobj.a, X.gbd, PV.gbd, tau = 0.5, n.mc.E.delta = 1000,
n.mc.E.chi2 = 1000, verbose = FALSE)
lmt.pv(fcobj.0, fcobj.a, X.gbd, PV.gbd, tau = 0.5, n.mc.E.delta = 1000,
n.mc.E.chi2 = 1000, verbose = FALSE)
Arguments
fcobj.0 |
a |
fcobj.a |
a |
X.gbd |
a data matrix of |
PV.gbd |
a p-value vector of signals associated with voxels.
|
tau |
proportion of null and alternative hypotheses. |
n.mc.E.delta |
number of Monte Carlo simulations for expectation of delta (difference of logL). |
n.mc.E.chi2 |
number of Monte Carlo simulations for expectation of chisquare statistics. |
verbose |
if verbose. |
Details
This function calls several subroutines to compute information,
likelihood ratio statistics, degrees of freedom, non-centrality
of chi-squared distributions ... etc. Based on Monte Carlo methods
to estimate parameters of likelihood mixture tests, this function
return a p-value for testing H0: fcobj.0
v.s. Ha: fcobj.a
.
lmt.pv()
only uses PV.gbd
.
Value
A list of class lmt.I
are returned.
Author(s)
Wei-Chen Chen and Ranjan Maitra.
References
Chen, W.-C. and Maitra, R. (2021) “A Practical Model-based Segmentation Approach for Accurate Activation Detection in Single-Subject functional Magnetic Resonance Imaging Studies”, arXiv:2102.03639.
See Also
EMCluster::lmt()
.
Examples
library(MixfMRI, quietly = TRUE)
library(EMCluster, quietly = TRUE)
.FC.CT$model.X <- "I"
.FC.CT$check.X.unit <- FALSE
.FC.CT$CONTROL$debug <- 0
.rem <- function(){
### Fit toy1.
set.seed(1234)
X.gbd <- toy1$X.gbd
PV.gbd <- toy1$PV.gbd
ret.2 <- fclust(X.gbd, PV.gbd, K = 2)
ret.3 <- fclust(X.gbd, PV.gbd, K = 3)
ret.4 <- fclust(X.gbd, PV.gbd, K = 4)
ret.5 <- fclust(X.gbd, PV.gbd, K = 5)
### ARI
RRand(toy1$CLASS.gbd, ret.2$class)
RRand(toy1$CLASS.gbd, ret.3$class)
RRand(toy1$CLASS.gbd, ret.4$class)
RRand(toy1$CLASS.gbd, ret.5$class)
### Test toy1.
(lmt.23 <- lmt.I(ret.2, ret.3, X.gbd, PV.gbd))
(lmt.24 <- lmt.I(ret.2, ret.4, X.gbd, PV.gbd))
(lmt.25 <- lmt.I(ret.2, ret.5, X.gbd, PV.gbd))
(lmt.34 <- lmt.I(ret.3, ret.4, X.gbd, PV.gbd))
(lmt.35 <- lmt.I(ret.3, ret.5, X.gbd, PV.gbd))
(lmt.45 <- lmt.I(ret.4, ret.5, X.gbd, PV.gbd))
### Test toy1 using p-values only.
(lmt.pv.23 <- lmt.pv(ret.2, ret.3, X.gbd, PV.gbd))
(lmt.pv.24 <- lmt.pv(ret.2, ret.4, X.gbd, PV.gbd))
(lmt.pv.25 <- lmt.pv(ret.2, ret.5, X.gbd, PV.gbd))
(lmt.pv.34 <- lmt.pv(ret.3, ret.4, X.gbd, PV.gbd))
(lmt.pv.35 <- lmt.pv(ret.3, ret.5, X.gbd, PV.gbd))
(lmt.pv.45 <- lmt.pv(ret.4, ret.5, X.gbd, PV.gbd))
}