| Likelihood Mixture Tests with Identity Cov Matrix or Only p-values {MixfMRI} | R Documentation | 
Likelihood Mixture Tests with Identity Cov Matrix or Only p-values
Description
These functions test two mixture Gaussian fMRI models with diagonal
covariance matrices and different numbers of clusters.
These functions are similar to the EMCluster::lmt(), but is coded
for fMRI models in MixfMRI.
Usage
  lmt.I(fcobj.0, fcobj.a, X.gbd, PV.gbd, tau = 0.5, n.mc.E.delta = 1000,
        n.mc.E.chi2 = 1000, verbose = FALSE)
  lmt.pv(fcobj.0, fcobj.a, X.gbd, PV.gbd, tau = 0.5, n.mc.E.delta = 1000,
        n.mc.E.chi2 = 1000, verbose = FALSE)
Arguments
| fcobj.0 | a  | 
| fcobj.a | a  | 
| X.gbd | a data matrix of  | 
| PV.gbd | a p-value vector of signals associated with voxels.
 | 
| tau | proportion of null and alternative hypotheses. | 
| n.mc.E.delta | number of Monte Carlo simulations for expectation of delta (difference of logL). | 
| n.mc.E.chi2 | number of Monte Carlo simulations for expectation of chisquare statistics. | 
| verbose | if verbose. | 
Details
This function calls several subroutines to compute information,
likelihood ratio statistics, degrees of freedom, non-centrality
of chi-squared distributions ... etc. Based on Monte Carlo methods
to estimate parameters of likelihood mixture tests, this function
return a p-value for testing H0: fcobj.0 v.s. Ha: fcobj.a.
lmt.pv() only uses PV.gbd.
Value
A list of class lmt.I are returned.
Author(s)
Wei-Chen Chen and Ranjan Maitra.
References
Chen, W.-C. and Maitra, R. (2021) “A Practical Model-based Segmentation Approach for Accurate Activation Detection in Single-Subject functional Magnetic Resonance Imaging Studies”, arXiv:2102.03639.
See Also
EMCluster::lmt().
Examples
library(MixfMRI, quietly = TRUE)
library(EMCluster, quietly = TRUE)
.FC.CT$model.X <- "I"
.FC.CT$check.X.unit <- FALSE
.FC.CT$CONTROL$debug <- 0
  
.rem <- function(){
  ### Fit toy1.
  set.seed(1234)
  X.gbd <- toy1$X.gbd
  PV.gbd <- toy1$PV.gbd
  ret.2 <- fclust(X.gbd, PV.gbd, K = 2)
  ret.3 <- fclust(X.gbd, PV.gbd, K = 3)
  ret.4 <- fclust(X.gbd, PV.gbd, K = 4)
  ret.5 <- fclust(X.gbd, PV.gbd, K = 5)
  
  ### ARI
  RRand(toy1$CLASS.gbd, ret.2$class)
  RRand(toy1$CLASS.gbd, ret.3$class)
  RRand(toy1$CLASS.gbd, ret.4$class)
  RRand(toy1$CLASS.gbd, ret.5$class)
  
  ### Test toy1.
  (lmt.23 <- lmt.I(ret.2, ret.3, X.gbd, PV.gbd))
  (lmt.24 <- lmt.I(ret.2, ret.4, X.gbd, PV.gbd))
  (lmt.25 <- lmt.I(ret.2, ret.5, X.gbd, PV.gbd))
  (lmt.34 <- lmt.I(ret.3, ret.4, X.gbd, PV.gbd))
  (lmt.35 <- lmt.I(ret.3, ret.5, X.gbd, PV.gbd))
  (lmt.45 <- lmt.I(ret.4, ret.5, X.gbd, PV.gbd))
  
  ### Test toy1 using p-values only.
  (lmt.pv.23 <- lmt.pv(ret.2, ret.3, X.gbd, PV.gbd))
  (lmt.pv.24 <- lmt.pv(ret.2, ret.4, X.gbd, PV.gbd))
  (lmt.pv.25 <- lmt.pv(ret.2, ret.5, X.gbd, PV.gbd))
  (lmt.pv.34 <- lmt.pv(ret.3, ret.4, X.gbd, PV.gbd))
  (lmt.pv.35 <- lmt.pv(ret.3, ret.5, X.gbd, PV.gbd))
  (lmt.pv.45 <- lmt.pv(ret.4, ret.5, X.gbd, PV.gbd))
}