MixfMRI Control {MixfMRI}R Documentation

Sets of controls in MixfMRI

Description

These sets of controls are used to provide default values in this package.

Format

Objects contain several parameters for methods.

Details

The elements of .FC.CT are default values for main controls of MixfMRI including

Elements Default Usage
algorithm "apecma" implemented algorithm
optim.method "BFGS" optimization method
model.X "I" cov matrix structure
ignore.X FALSE if using voxel information
check.X.unit TRUE if checking X in [0, 1]
CONTROL a list see CONTROL next for details
INIT a list see INIT next for details
LRT a list see LRT next for details
MPI.gbd FALSE if MPI speedup available
common.gbd TRUE if X in common gbd format

The elements of CONTROL are default values for optimization controls of implemented EM algorithm including

Elements Default Usage
max.iter 1000 maximum number of EM iterations
abs.err 1e-4 absolute error of convergence
rel.err 1e-6 relative error of convergence
debug 1 debugging level
RndEM.iter 10 RndEM iterations
exp.min log(.Machine$double.xmin) minimum exponential power
exp.max log(.Machine$double.xmax) maximum exponential power
sigma.ill 1e-6 ill condition limit
DS.max 1e+4 maximum chol() cov matrix
DS.min 1e-6 minimum chol() cov matrix

The elements of INIT are default values or limitations for initial parameters implemented for EM algorithm including

Elements Default Usage
min.1st.prop 0.8 minimum proportion of 1st cluster
max.PV 0.1 maximum p-value for initialization
BETA.alpha.min 0 + 1e-6 minimum value of alpha parameter of Beta distribution
BETA.alpha.max 1 - 1e-6 maximum value of alpha parameter of Beta distribution
BETA.beta.min 1 + 1e-6 minimum value of beta parameter of Beta distribution
BETA.beta.max 1e+6 maximum value of beta parameter of Beta distribution
max.try.iter 10 maximum retry iterations if result is unstable
class.method "prob.extned" classification method at initializations

The elements of LRT are default values or limitations for likelihood ratio tests including

Elements Default Usage
H0.alpha 1 null hypothesis alpha parameter of Beta distribution
H0.beta 1 null hypothesis beta parameter of Beta distribution
H0.mean 0.05 null hypothesis mean of Beta distribution

Author(s)

Wei-Chen Chen and Ranjan Maitra.

References

Chen, W.-C. and Maitra, R. (2021) “A Practical Model-based Segmentation Approach for Accurate Activation Detection in Single-Subject functional Magnetic Resonance Imaging Studies”, arXiv:2102.03639.

See Also

set.global(), fclust().


[Package MixfMRI version 0.1-3 Index]