learnDiagGaussian {MixAll} | R Documentation |
Create an instance of a learn mixture model
Description
This function learn the optimal mixture model when the class labels are known
according to the criterion
among the list of model given in models
.
Usage
learnDiagGaussian(
data,
labels,
prop = NULL,
models = clusterDiagGaussianNames(prop = "equal"),
algo = "simul",
nbIter = 100,
epsilon = 1e-08,
criterion = "ICL",
nbCore = 1
)
learnPoisson(
data,
labels,
prop = NULL,
models = clusterPoissonNames(prop = "equal"),
algo = "simul",
nbIter = 100,
epsilon = 1e-08,
criterion = "ICL",
nbCore = 1
)
learnGamma(
data,
labels,
prop = NULL,
models = clusterGammaNames(prop = "equal"),
algo = "simul",
nbIter = 100,
epsilon = 1e-08,
criterion = "ICL",
nbCore = 1
)
learnCategorical(
data,
labels,
prop = NULL,
models = clusterCategoricalNames(prop = "equal"),
algo = "simul",
nbIter = 100,
epsilon = 1e-08,
criterion = "ICL",
nbCore = 1
)
Arguments
data |
frame or matrix containing the data. Rows correspond to observations and columns correspond to variables. If the data set contains NA values, they will be estimated during the estimation process. |
labels |
vector or factors giving the label class. |
prop |
[ |
models |
[ |
algo |
character defining the algo to used in order to learn the model. Possible values: "simul" (default), "impute" (faster but can produce biased results). |
nbIter |
integer giving the number of iterations to do. algo is "impute" this is the maximal authorized number of iterations. Default is 100. |
epsilon |
real giving the variation of the log-likelihood for stopping the iterations. Not used if algo is "simul". Default value is 1e-08. |
criterion |
character defining the criterion to select the best model. The best model is the one with the lowest criterion value. Possible values: "BIC", "AIC", "ML". Default is "ICL". |
nbCore |
integer defining the number of processors to use (default is 1, 0 for all). |
Value
An instance of a learned mixture model class.
Author(s)
Serge Iovleff
Examples
## A quantitative example with the famous iris data set
data(iris)
## get data and target
x <- as.matrix(iris[,1:4]);
z <- as.vector(iris[,5]);
n <- nrow(x); p <- ncol(x);
## add missing values at random
indexes <- matrix(c(round(runif(5,1,n)), round(runif(5,1,p))), ncol=2);
x[indexes] <- NA;
## learn model
model <- learnDiagGaussian( data=x, labels= z, prop = c(1/3,1/3,1/3)
, models = clusterDiagGaussianNames(prop = "equal")
)
## get summary
summary(model)
## use graphics functions
plot(model)
## print model (a detailed and very long output)
print(model)
## get estimated missing values
missingValues(model)