| learnDiagGaussian {MixAll} | R Documentation |
Create an instance of a learn mixture model
Description
This function learn the optimal mixture model when the class labels are known
according to the criterion among the list of model given in models.
Usage
learnDiagGaussian(
data,
labels,
prop = NULL,
models = clusterDiagGaussianNames(prop = "equal"),
algo = "simul",
nbIter = 100,
epsilon = 1e-08,
criterion = "ICL",
nbCore = 1
)
learnPoisson(
data,
labels,
prop = NULL,
models = clusterPoissonNames(prop = "equal"),
algo = "simul",
nbIter = 100,
epsilon = 1e-08,
criterion = "ICL",
nbCore = 1
)
learnGamma(
data,
labels,
prop = NULL,
models = clusterGammaNames(prop = "equal"),
algo = "simul",
nbIter = 100,
epsilon = 1e-08,
criterion = "ICL",
nbCore = 1
)
learnCategorical(
data,
labels,
prop = NULL,
models = clusterCategoricalNames(prop = "equal"),
algo = "simul",
nbIter = 100,
epsilon = 1e-08,
criterion = "ICL",
nbCore = 1
)
Arguments
data |
frame or matrix containing the data. Rows correspond to observations and columns correspond to variables. If the data set contains NA values, they will be estimated during the estimation process. |
labels |
vector or factors giving the label class. |
prop |
[ |
models |
[ |
algo |
character defining the algo to used in order to learn the model. Possible values: "simul" (default), "impute" (faster but can produce biased results). |
nbIter |
integer giving the number of iterations to do. algo is "impute" this is the maximal authorized number of iterations. Default is 100. |
epsilon |
real giving the variation of the log-likelihood for stopping the iterations. Not used if algo is "simul". Default value is 1e-08. |
criterion |
character defining the criterion to select the best model. The best model is the one with the lowest criterion value. Possible values: "BIC", "AIC", "ML". Default is "ICL". |
nbCore |
integer defining the number of processors to use (default is 1, 0 for all). |
Value
An instance of a learned mixture model class.
Author(s)
Serge Iovleff
Examples
## A quantitative example with the famous iris data set
data(iris)
## get data and target
x <- as.matrix(iris[,1:4]);
z <- as.vector(iris[,5]);
n <- nrow(x); p <- ncol(x);
## add missing values at random
indexes <- matrix(c(round(runif(5,1,n)), round(runif(5,1,p))), ncol=2);
x[indexes] <- NA;
## learn model
model <- learnDiagGaussian( data=x, labels= z, prop = c(1/3,1/3,1/3)
, models = clusterDiagGaussianNames(prop = "equal")
)
## get summary
summary(model)
## use graphics functions
plot(model)
## print model (a detailed and very long output)
print(model)
## get estimated missing values
missingValues(model)