kmmMixedData {MixAll} | R Documentation |
Create an instance of the [KmmMixedDataModel
] class
Description
This function computes the optimal mixture model for mixed data using kernel
mixture models according to the criterion
among the number of clusters
given in nbCluster
using the strategy specified in [strategy
].
Usage
kmmMixedData(
ldata,
lmodels,
nbCluster = 2,
strategy = clusterStrategy(),
criterion = "ICL",
nbCore = 1
)
Arguments
ldata |
[ |
lmodels |
a [ |
nbCluster |
[ |
strategy |
a [ |
criterion |
character defining the criterion to select the best model. The best model is the one with the lowest criterion value. Possible values: "BIC", "AIC", "ICL", "ML". Default is "ICL". |
nbCore |
integer defining the number of processors to use (default is 1, 0 for all). |
Details
For each data set in data, we need to specify a list of parameters
Value
An instance of the [KmmMixedDataModel
] class.
Author(s)
Serge Iovleff
Examples
## An example with the bullsEye data set
data(bullsEye)
data(bullsEye.cat)
## with default values
ldata <- list(bullsEye, bullsEye.cat)
modelcont <- list(modelName="kmm_pk_s", dim = 10, kernelName="Gaussian")
modelcat <- list(modelName="kmm_pk_s", dim = 20, kernelName="Hamming", kernelParameters = c(0.6))
lmodels <- list( modelcont, modelcat)
model <- kmmMixedData(ldata, lmodels, nbCluster=2:5, strategy = clusterFastStrategy())
## get summary
summary(model)
## use graphics functions
plot(model)