kmm {MixAll} | R Documentation |
Create an instance of the [KmmModel
] class
Description
This function computes the optimal kernel mixture model (KMM) according
to the [criterion
] among the number of clusters given in
[nbCluster
], using the strategy specified in [strategy
].
Usage
kmm(
data,
nbCluster = 2,
dim = 10,
models = "kmm_pk_s",
kernelName = "Gaussian",
kernelParameters = c(1),
kernelComputation = TRUE,
strategy = kmmStrategy(),
criterion = "ICL",
nbCore = 1
)
Arguments
data |
frame or matrix containing the data. Rows correspond to observations and columns correspond to variables. |
nbCluster |
[ |
dim |
integer giving the dimension of the Gaussian density. Default is 10. |
models |
[ |
kernelName |
string with a kernel name. Possible values: "Gaussian", "polynomial", "Laplace", "linear", "rationalQuadratic_", "Hamming". Default is "Gaussian". |
kernelParameters |
[ |
kernelComputation |
[ |
strategy |
a [ |
criterion |
character defining the criterion to select the best model. The best model is the one with the lowest criterion value. Possible values: "BIC", "AIC", "ICL", "ML". Default is "ICL". |
nbCore |
integer defining the number of processor to use (default is 1, 0 for all). |
Value
An instance of the [KmmModel
] class.
Note
in KmmModel instance returned, the gram matrix is computed if and only
if kernelComputation is TRUE
.
Author(s)
Serge Iovleff
Examples
## A quantitative example with the famous bulls eye model
data(bullsEye)
## estimate model
model <- kmm( data=bullsEye, nbCluster=2:3, models= "kmm_pk_s")
## get summary
summary(model)
## use graphics functions
plot(model)